Vortex Detection in Vector Fields Using Geometric Algebra
暂无分享,去创建一个
[1] Jinhee Jeong,et al. On the identification of a vortex , 1995, Journal of Fluid Mechanics.
[2] Hans-Christian Hege,et al. Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .
[3] Leo Dorst,et al. The making of a geometric algebra package in Matlab , 1999 .
[4] Leo Dorst,et al. Why geometric algebra , 2007 .
[5] R. Peikert,et al. A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).
[6] Brittany Terese Fasy,et al. Review of Geometric algebra for computer science by Leo Dorst, Daniel Fontijne, and Stephen Mann (Morgan Kaufmann Publishers, 2007) , 2008, SIGA.
[7] L. Portela. Identification and characterization of vortices in the turbulent boundary layer , 1998 .
[8] Santiago V. Lombeyda,et al. Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..
[9] Hans-Christian Hege,et al. Vortex and Strain Skeletons in Eulerian and Lagrangian Frames , 2007, IEEE Transactions on Visualization and Computer Graphics.
[10] Raghu Machiraju,et al. A Novel Approach To Vortex Core Region Detection , 2002, VisSym.
[11] Charles D. Hansen,et al. Visualization of intricate flow structures for vortex breakdown analysis , 2004, IEEE Visualization 2004.
[12] Ronald Peikert,et al. Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.
[13] David Hestenes,et al. Space-time algebra , 1966 .
[14] Eduardo Bayro-Corrochano,et al. Geometric Computing - for Wavelet Transforms, Robot Vision, Learning, Control and Action , 2010 .
[15] Stephen Mann,et al. Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..
[16] Stephen K. Robinson,et al. A Review of Vortex Structures and Associated Coherent Motions in Turbulent Boundary Layers , 1990 .
[17] B. Cantwell,et al. The decay of a viscous vortex pair , 1988 .
[18] G. Batchelor,et al. On steady laminar flow with closed streamlines at large Reynolds number , 1956, Journal of Fluid Mechanics.
[19] David C. Banks,et al. A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..
[20] Hans Hagen,et al. A tetrahedra-based stream surface algorithm , 2001, Proceedings Visualization, 2001. VIS '01..
[21] Hans-Peter Seidel,et al. Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..
[22] D. Sujudi,et al. Identification of Swirling Flow in 3-D Vector Fields , 1995 .
[23] Xavier Tricoche,et al. Surface techniques for vortex visualization , 2004, VISSYM'04.
[24] Peter S. Bernard,et al. Vortex dynamics and the production of Reynolds stress , 1993, Journal of Fluid Mechanics.
[25] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[26] Daniel Fontijne,et al. Gaigen 2:: a geometric algebra implementation generator , 2006, GPCE '06.