Vortex Detection in Vector Fields Using Geometric Algebra

We present a new method of detecting vortices in sampled vector fields by using Geometric Algebra, and tested three swirl-plane estimation methods for use within our algorithm. Our vortex-detection algorithm recursively looks at vector samples and, via an application of the two-dimensional version of the Gauss-Bonnet Theorem, extracts vortex cores.

[1]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[2]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[3]  Leo Dorst,et al.  The making of a geometric algebra package in Matlab , 1999 .

[4]  Leo Dorst,et al.  Why geometric algebra , 2007 .

[5]  R. Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[6]  Brittany Terese Fasy,et al.  Review of Geometric algebra for computer science by Leo Dorst, Daniel Fontijne, and Stephen Mann (Morgan Kaufmann Publishers, 2007) , 2008, SIGA.

[7]  L. Portela Identification and characterization of vortices in the turbulent boundary layer , 1998 .

[8]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[9]  Hans-Christian Hege,et al.  Vortex and Strain Skeletons in Eulerian and Lagrangian Frames , 2007, IEEE Transactions on Visualization and Computer Graphics.

[10]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[11]  Charles D. Hansen,et al.  Visualization of intricate flow structures for vortex breakdown analysis , 2004, IEEE Visualization 2004.

[12]  Ronald Peikert,et al.  Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[13]  David Hestenes,et al.  Space-time algebra , 1966 .

[14]  Eduardo Bayro-Corrochano,et al.  Geometric Computing - for Wavelet Transforms, Robot Vision, Learning, Control and Action , 2010 .

[15]  Stephen Mann,et al.  Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..

[16]  Stephen K. Robinson,et al.  A Review of Vortex Structures and Associated Coherent Motions in Turbulent Boundary Layers , 1990 .

[17]  B. Cantwell,et al.  The decay of a viscous vortex pair , 1988 .

[18]  G. Batchelor,et al.  On steady laminar flow with closed streamlines at large Reynolds number , 1956, Journal of Fluid Mechanics.

[19]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[20]  Hans Hagen,et al.  A tetrahedra-based stream surface algorithm , 2001, Proceedings Visualization, 2001. VIS '01..

[21]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[22]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[23]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[24]  Peter S. Bernard,et al.  Vortex dynamics and the production of Reynolds stress , 1993, Journal of Fluid Mechanics.

[25]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[26]  Daniel Fontijne,et al.  Gaigen 2:: a geometric algebra implementation generator , 2006, GPCE '06.