Image region description using orthogonal combination of local binary patterns enhanced with color information

Visual content description is a key issue for machine-based image analysis and understanding. A good visual descriptor should be both discriminative and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. In this paper, we propose a new operator called the orthogonal combination of local binary patterns (denoted as OC-LBP) and six new local descriptors based on OC-LBP enhanced with color information for image region description. The aim is to increase both discriminative power and photometric invariance properties of the original LBP operator while keeping its computational efficiency. The experiments in three different applications show that the proposed descriptors outperform the popular SIFT, CS-LBP, HOG and SURF, and achieve comparable or even better performances than the state-of-the-art color SIFT descriptors. Meanwhile, the proposed descriptors provide complementary information to color SIFT, because a fusion of these two kinds of descriptors is found to perform clearly better than either of the two separately. Moreover, the proposed descriptors are about four times faster to compute than color SIFT.

[1]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[2]  M. Topi,et al.  Robust texture classification by subsets of local binary patterns , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[3]  M. Topi,et al.  Texture classification by multi-predicate local binary pattern operators , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[4]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[5]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Liming Chen,et al.  Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition , 2010, 2010 20th International Conference on Pattern Recognition.

[7]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[8]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[9]  Matti Pietikäinen,et al.  Texture Classification by Multi-Predicate Local Binary Pattern Operators , 2000, ICPR.

[10]  Matti Pietikäinen,et al.  Robust Texture Classification by Subsets of Local Binary Patterns , 2000, ICPR.

[11]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[14]  Chee Sun Won,et al.  Efficient use of local edge histogram descriptor , 2000, MULTIMEDIA '00.

[15]  Bin Fan,et al.  Local Intensity Order Pattern for feature description , 2011, 2011 International Conference on Computer Vision.

[16]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[17]  GeversTheo,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010 .

[18]  Zhanyi Hu,et al.  Aggregating gradient distributions into intensity orders: A novel local image descriptor , 2011, CVPR 2011.

[19]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[21]  Rong Xiao,et al.  Rank-SIFT: Learning to rank repeatable local interest points , 2011, CVPR 2011.

[22]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[24]  Di Huang,et al.  Local Binary Patterns and Its Application to Facial Image Analysis: A Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[25]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[26]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  B. K. Julsing,et al.  Face Recognition with Local Binary Patterns , 2012 .

[28]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[29]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[30]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[31]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[32]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[33]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[35]  Stefanie Nowak,et al.  New Strategies for Image Annotation: Overview of the Photo Annotation Task at ImageCLEF 2010 , 2010, CLEF.

[36]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[37]  PietikainenMatti,et al.  Face Description with Local Binary Patterns , 2006 .

[38]  TorralbaAntonio,et al.  Modeling the Shape of the Scene , 2001 .

[39]  Andrew Zisserman,et al.  Scene Classification Using a Hybrid Generative/Discriminative Approach , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  ZhangJ.,et al.  Local Features and Kernels for Classification of Texture and Object Categories , 2007 .

[41]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[42]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[43]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[44]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[45]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[46]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[49]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[50]  M. Pietikäinen,et al.  Facial expression recognition based on local binary patterns , 2007, Pattern Recognition and Image Analysis.

[51]  ChenLiming,et al.  Local Binary Patterns and Its Application to Facial Image Analysis , 2011 .

[52]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.