Models for a paraconsistent set theory

Abstract In this paper the existence of natural models for a paraconsistent version of naive set theory is discussed. These stand apart from the previous attempts due to the presence of some non-monotonic ingredients in the comprehension scheme they fulfill. Particularly, it is proved here that allowing the equality relation in formulae defining sets, within an extensional universe, compels the use of non-monotonic operators. By reviewing the preceding attempts, we show how our models can naturally be obtained as fixed points of some functor acting on a suitable category (stressing the use of fixed-point arguments in obtaining such alternative semantics).

[1]  Paul C. Gilmore,et al.  The Consistency of Partial Set Theory without Extensionality , 1974 .

[2]  Solomon Feferman,et al.  Toward useful type-free theories. I , 1984, Journal of Symbolic Logic.

[3]  D. Harrison,et al.  Vicious Circles , 1995 .

[4]  Olivier Esser Inconsistency of The Axiom of Choice with The Positive Theory GPK+infinite , 2000, J. Symb. Log..

[5]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[6]  Roland Hinnion Naive Set Theory with Extensionality in Partial Logic and in Paradoxical Logic , 1994, Notre Dame J. Formal Log..

[7]  Thierry Libert ZF and the axiom of choice in some paraconsistent set theories , 2003 .

[8]  Marco Forti,et al.  The Consistency Problem for Positive Comprehension Principles , 1989, J. Symb. Log..

[9]  Hartry Field Saving the Truth Schema from Paradox , 2002, J. Philos. Log..

[10]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[11]  Michael W. Mislove,et al.  Non-Well-Founded Sets Modeled as Ideal Fixed Points , 1991, Inf. Comput..

[12]  Peter Apostoli,et al.  Approximation Spaces of Type-Free Sets , 2000, Rough Sets and Current Trends in Computing.

[13]  Wei Li,et al.  On logic of paradox , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.

[14]  Maurice Boffa,et al.  Interprétations mutuelles entre une théorie positive des ensembles et une extension de la théorie de Kelley-Morse , 1997 .

[15]  Ross T. Brady The simple consistency of a set theory based on the logic CSQ , 1983, Notre Dame J. Formal Log..

[16]  Ross T. Brady The consistency of the axioms of abstraction and extensionality in a three-valued logic , 1971, Notre Dame J. Formal Log..

[17]  Greg Restall A Note on Naive Set Theory in LP , 1992, Notre Dame J. Formal Log..

[18]  Furio Honsell,et al.  A General Construction of Hyperuniverses , 1996, Theor. Comput. Sci..

[19]  Thierry Libert,et al.  Semantics for Naive Set Theory in Many-Valued Logics , 2006 .

[20]  Anthony Hunter,et al.  Paraconsistent logics , 1998 .

[21]  Arnon Avron,et al.  Natural 3-valued logics—characterization and proof theory , 1991, Journal of Symbolic Logic.

[22]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..

[23]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[24]  Otávio Bueno,et al.  Paraconsistency: Towards a tentative interpretation , 2001 .

[25]  Johan van Benthem,et al.  The Age of Alternative Logics , 2005 .

[26]  Roland Hinnion,et al.  Positive abstraction and extensionality , 2003, Journal of Symbolic Logic.