On the Scalar-Help-Vector Source Coding Problem

In this paper, we consider a scalar-help-vector source coding problem for $L+1$ correlated Gaussian memoryless sources. We deal with the case where $L$ encoders observe noisy linear combinations of $K$ correlated Gaussian scalar sources which work as partial side information at the decoder, while the remaining one encoder observes a vector Gaussian source which works as the primary source we need to reconstruct. We determine an outer region for the case where the $L$ sources are conditionally independent of the vector source. We also show an inner region for a special case when the vector source can be regard as $K$ scalar sources.

[1]  Aaron B. Wagner,et al.  Rate Region of the Gaussian Scalar-Help-Vector Source-Coding Problem , 2012, IEEE Trans. Inf. Theory.

[2]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[3]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[4]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[5]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[6]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[7]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .

[8]  Zixiang Xiong,et al.  On the Generalized Gaussian CEO Problem , 2012, IEEE Transactions on Information Theory.

[9]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[10]  Y. Oohama Gaussian multiterminal source coding , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[11]  Toby Berger,et al.  An upper bound on the rate distortion function for source coding with partial side information at the decoder , 1979, IEEE Trans. Inf. Theory.

[12]  Aaron B. Wagner,et al.  Rate Region of the Gaussian Scalar-Help-Vector Source-Coding Problem , 2012, IEEE Transactions on Information Theory.

[13]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[14]  J. Wolfowitz The rate distortion function for source coding with side information at the decoder. II , 1979 .

[15]  Gregory J. Pottie,et al.  Fidelity and Resource Sensitive Data Gathering , 2004 .

[16]  Yasutada Oohama,et al.  Indirect and Direct Gaussian Distributed Source Coding Problems , 2014, IEEE Transactions on Information Theory.

[17]  Zhen Zhang,et al.  On the CEO problem , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.