Cd Hermite interpolations with spatial Pythagorean hodograph B-splines

Abstract Following the recent results of Albrecht et al., 2017 , Albrecht et al., 2020 , the problem of Hermite interpolation by clamped spatial Pythagorean hodograph (PH) B-spline curves is thoroughly investigated in this paper. The constructed interpolants are obtained by using beneficial properties of B-spline basis functions and via solving special quadratic and linear equations in quaternion algebra. All the designed procedures are purely symbolic and the main contribution lies in the unifying approach to the formulated problem. The results are confirmed by several computed examples.

[1]  Carla Manni,et al.  Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics , 2005, Adv. Comput. Math..

[2]  Rida T. Farouki,et al.  Construction and shape analysis of PH quintic Hermite interpolants , 2001, Comput. Aided Geom. Des..

[3]  Bert Jüttler,et al.  C HERMITE INTERPOLATION BY PYTHAGOREAN HODOGRAPH SPACE CURVES , 2007 .

[4]  Carla Manni,et al.  Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures , 2008, Comput. Aided Geom. Des..

[5]  Carla Manni,et al.  Spatial C^2 PH quintic splines , 2003 .

[6]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[7]  Miroslav Lávička,et al.  Pythagorean hodograph curves: A survey of recent advances , 2014 .

[8]  Carolina Vittoria Beccari,et al.  Spatial Pythagorean-Hodograph B-Spline curves and 3D point data interpolation , 2020, Comput. Aided Geom. Des..

[9]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[10]  Bert Jüttler,et al.  Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling , 1999, Comput. Aided Des..

[11]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[12]  B. Jüttler,et al.  Constructing acceleration continuous tool paths using Pythagorean Hodograph curves , 2005 .

[13]  Zbynek Sír,et al.  C2 Hermite interpolation by Pythagorean-hodograph quintic triarcs , 2014, Comput. Aided Geom. Des..

[14]  Rida T. Farouki,et al.  Singular cases of planar and spatial C1 Hermite interpolation problems based on quintic Pythagorean-hodograph curves , 2020, Comput. Aided Geom. Des..

[15]  Gudrun Albrecht,et al.  Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation , 2014, Advances in Computational Mathematics.

[16]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[17]  Vito Vitrih,et al.  C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs , 2014, J. Comput. Appl. Math..

[18]  Gudrun Albrecht,et al.  Planar Pythagorean-Hodograph B-Spline curves , 2017, Comput. Aided Geom. Des..

[19]  Bert Jüttler,et al.  Spatial Pythagorean Hodograph Quintics and the Approximation of Pipe Surfaces , 2005, IMA Conference on the Mathematics of Surfaces.

[20]  Rida T. Farouki,et al.  Topological Criterion for Selection of Quintic Pythagorean – Hodograph Hermite Interpolants ∗ , 2006 .

[21]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[22]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[23]  R. Farouki,et al.  New Developments in Theory, Algorithms, and Applications for Pythagorean–Hodograph Curves , 2019, Advanced Methods for Geometric Modeling and Numerical Simulation.

[24]  Miroslav Lávicka,et al.  Interpolation of Hermite data by clamped Minkowski Pythagorean hodograph B-spline curves , 2021, J. Comput. Appl. Math..