A molecular CT blood pool contrast agent.

[1]  C K Hoh,et al.  A synthetic macromolecule for sentinel node detection: (99m)Tc-DTPA-mannosyl-dextran. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  T. Helbich,et al.  A new polysaccharide macromolecular contrast agent for MR imaging: Biodistribution and imaging characteristics , 2000, Journal of magnetic resonance imaging : JMRI.

[3]  M. Janier,et al.  Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion. , 1998, Academic radiology.

[4]  M. Wendland,et al.  Macromolecular contrast media-enhanced MRI estimates of microvascular permeability correlate with histopathologic tumor grade. , 1998, Academic radiology.

[5]  E. Dellacherie,et al.  Polymeric conjugates of Gd(3+)-diethylenetriaminepentaacetic acid and dextran. 2. Influence of spacer arm length and conjugate molecular mass on the paramagnetic properties and some biological parameters. , 1998, Bioconjugate chemistry.

[6]  E. Dellacherie,et al.  Polymeric conjugates of Gd(3+)-diethylenetriaminepentaacetic acid and dextran. 1. Synthesis, characterization, and paramagnetic properties. , 1997, Bioconjugate chemistry.

[7]  J. Mintorovitch,et al.  Definition of liver tumors in the presence of diffuse liver disease: comparison of findings at MR imaging with positive and negative contrast agents. , 1997, Radiology.

[8]  W Krause,et al.  Ytterbium- and dysprosium-EOB-DTPA. A new prototype of liver-specific contrast agents for computed tomography. , 1996, Investigative radiology.

[9]  S. Dumitriu Polysaccharides in Medicinal Applications , 1996 .

[10]  Shihua Zhao,et al.  Carboxymethyl-dextran-gadolinium-DTPA as a blood-pool contrast agent for magnetic resonance angiography. Experimental study in rabbits. , 1996, Investigative radiology.

[11]  G. Frija,et al.  Capillary leakage of a macromolecular MRI agent, carboxymethyldextran-Gd-DTPA, in the liver: pharmacokinetics and imaging implications. , 1996, Magnetic resonance imaging.

[12]  M. Laniado,et al.  [The endorem tolerance profile]. , 1995, Der Radiologe.

[13]  M. Schaefer,et al.  Paramagnetic dextrans as magnetic resonance blood pool tracers. , 1994, Investigative radiology.

[14]  R. M. Peters,et al.  Characterization and mechanism of side-effects of Oxygent HT (highly concentrated fluorocarbon emulsion) in swine. , 1994, Artificial cells, blood substitutes, and immobilization biotechnology.

[15]  D. Carney,et al.  Perfluorooctylbromide as a contrast agent for CT and sonography: preliminary clinical results. , 1993, AJR. American journal of roentgenology.

[16]  M. Tweedle,et al.  Macrocyclic polyaminocarboxylate complexes of lanthanides as magnetic resonance imaging contrast agents , 1993 .

[17]  M. Tweedle,et al.  Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. , 1992, Investigative radiology.

[18]  M. Brechbiel,et al.  Convenient synthesis of bifunctional tetraaza macrocycles. , 1992, Bioconjugate chemistry.

[19]  L. Seymour Passive tumor targeting of soluble macromolecules and drug conjugates. , 1992, Critical reviews in therapeutic drug carrier systems.

[20]  R. Mattrey Blood‐Pool Contrast Media Are the Ideal Agents for Computed Tomography , 1991, Investigative radiology.

[21]  C. Corot,et al.  Iodinated Polymer as Blood‐Pool Contrast Agent: Computed Tomography Evaluation in Rabbits , 1991, Investigative radiology.

[22]  B. Coley,et al.  AUR Memorial Award 1990. The physiologic basis of the radiodense renal medulla after the administration of blood pool contrast agent PFOB. , 1990, Investigative radiology.

[23]  N. L. Krinick,et al.  Targetable photoactivatable drugs, 2. Synthesis of N‐(2‐hydroxypropyl)methacrylamide copolymeranti‐thy 1.2 antibody‐chlorin e6 conjugates and a preliminary study of their photodynamic effect on mouse splenocytes in vitro , 1990 .

[24]  E. Kleinerman,et al.  Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine in cancer patients. , 1989, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  R. Mattrey,et al.  Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging. , 1989, AJR. American journal of roentgenology.

[26]  C. Balu-Maestro,et al.  Liver, spleen, and vessels: preliminary clinical results of CT with perfluorooctylbromide. , 1989, Radiology.

[27]  R. Mattrey Potential role of perfluorooctylbromide in the detection and characterization of liver lesions with CT. , 1989, Radiology.

[28]  J. Hagan,et al.  Comparative chemical structure and pharmacokinetics of MRI contrast agents. , 1988 .

[29]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[30]  C. Meares,et al.  Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. , 1984, Analytical biochemistry.

[31]  C. Higgins,et al.  Perfluoroctylbromide as a Blood Pool Contrast Agent for Liver, Spleen, and Vascular Imaging in Computed Tomography , 1984, Journal of computer assisted tomography.

[32]  R. Fisher,et al.  Computed tomography of the liver and spleen with intravenous lipoid contrast material: review of 60 examinations. , 1982, AJR. American journal of roentgenology.

[33]  T. Greenwalt,et al.  Blood substitutes and plasma expanders , 1978 .

[34]  B. Alexander Effects of plasma expanders on coagulation and hemostasis: dextran hydroxyethyl starch, and other macromolecules revisited. , 1978, Progress in clinical and biological research.

[35]  G. Krejcarek,et al.  Covalent attachment of chelating groups to macromolecules. , 1977, Biochemical and biophysical research communications.

[36]  R. Fields [38] The rapid determination of amino groups with TNBS. , 1972, Methods in enzymology.

[37]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .

[38]  Charles S. Barrett,et al.  The Structure of Metals , 1904, Nature.