PM2.5 concentration prediction using hidden semi-Markov model-based times series data mining

[1]  L. Chittka An Empirical Approach* , 2009 .

[2]  Eduardo Conde,et al.  An HMM for detecting spam mail , 2007, Expert Syst. Appl..

[3]  David He,et al.  A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology , 2007 .

[4]  Baikunth Nath,et al.  A fusion model of HMM, ANN and GA for stock market forecasting , 2007, Expert Syst. Appl..

[5]  David He,et al.  Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis , 2007, Eur. J. Oper. Res..

[6]  Robert B. Jacko,et al.  Model for Forecasting Expressway Fine Particulate Matter and Carbon Monoxide Concentration: Application of Regression and Neural Network Models , 2007, Journal of the Air & Waste Management Association.

[7]  T. Yalcinoz,et al.  Implementing soft computing techniques to solve economic dispatch problem in power systems , 2008, Expert Syst. Appl..

[8]  Shunzheng Yu,et al.  Practical implementation of an efficient forward-backward algorithm for an explicit-duration hidden Markov model , 2006, IEEE Transactions on Signal Processing.

[9]  Yücel Altunbasak,et al.  Protein secondary structure prediction for a single-sequence using hidden semi-Markov models , 2006, BMC Bioinformatics.

[10]  Yann Guédon,et al.  Hidden hybrid Markov/semi-Markov chains , 2005, Comput. Stat. Data Anal..

[11]  P. Baruah,et al.  HMMs for diagnostics and prognostics in machining processes , 2005 .

[12]  Gavin C. Cawley,et al.  Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki , 2003 .

[13]  Archontoula Chaloulakou,et al.  Neural Network and Multiple Regression Models for PM10 Prediction in Athens: A Comparative Assessment , 2003, Journal of the Air & Waste Management Association.

[14]  Y. Guédon Estimating Hidden Semi-Markov Chains From Discrete Sequences , 2003 .

[15]  Hsin-Chung Lu,et al.  Predicting the exceedances of a critical PM10 concentration—a case study in Taiwan , 2003 .

[16]  Gavin C. Cawley,et al.  A rigorous inter-comparison of ground-level ozone predictions , 2003 .

[17]  Shunzheng Yu,et al.  A hidden semi-Markov model with missing data and multiple observation sequences for mobility tracking , 2003, Signal Process..

[18]  H. Kobayashi,et al.  An efficient forward-backward algorithm for an explicit-duration hidden Markov model , 2003, IEEE Signal Processing Letters.

[19]  Johann Graf Lambsdorff,et al.  An Empirical Approach , 2002 .

[20]  J. Sherwell,et al.  Estimation of Ambient PM2.5 Concentrations in Maryland and Verification by Measured Values , 2002, Journal of the Air & Waste Management Association.

[21]  Ian G. McKendry,et al.  Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10 and PM2.5) Forecasting , 2002, Journal of the Air & Waste Management Association.

[22]  S. Ojha,et al.  Developing systems to forecast ozone and particulate matter levels , 2002 .

[23]  D G Gajghate,et al.  Prediction of Ambient PM10 and Toxic Metals Using Artificial Neural Networks , 2002, Journal of the Air & Waste Management Association.

[24]  P. Scheff,et al.  Defining the Photochemical Contribution to Particulate Matter in Urban Areas Using Time-Series Analysis , 2002, Journal of the Air & Waste Management Association.

[25]  R. Burnett,et al.  Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. , 2002, JAMA.

[26]  Gary W. Fuller,et al.  An empirical approach for the prediction of daily mean PM10 concentrations , 2002 .

[27]  V. Joshi,et al.  Determining spatial patterns in Delhi's ambient air quality data using cluster analysis , 2002 .

[28]  D. G. Gajghate,et al.  Statistical Modeling of Ambient Air Pollutants in Delhi , 2001 .

[29]  Massimo Cossentino,et al.  Bayesian Models Of The PM10 Atmospheric Urban Pollution , 2001 .

[30]  Michael E. Houle,et al.  Robust Distance-Based Clustering with Applications to Spatial Data Mining , 2001, Algorithmica.

[31]  Carey Bunks,et al.  CONDITION-BASED MAINTENANCE OF MACHINES USING HIDDEN MARKOV MODELS , 2000 .

[32]  Douglas L. Brutlag,et al.  Bayesian Segmentation of Protein Secondary Structure , 2000, J. Comput. Biol..

[33]  J D Spengler,et al.  Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? , 1999, Environmental health perspectives.

[34]  Jorge Reyes,et al.  Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile , 2000 .

[35]  Yann Guédon,et al.  Computational methods for discrete hidden semi‐Markov chains , 1999 .

[36]  M. W Gardner,et al.  Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences , 1998 .

[37]  Joel Schwartz,et al.  Simultaneous immunisation with influenza vaccine and pneumococcal polysaccharide vaccine in patients with chronic respiratory disease , 1997, BMJ.

[38]  A. Calcara,et al.  A Short-term Air Pollution Predictor For UrbanAreas With Complex Orography.Application To The Town Of Palermo. , 1997 .

[39]  F. Rando,et al.  Short-time fuzzy DAP predictor for air pollution due to vehicular traffic , 1997 .

[40]  D. Dockery,et al.  Acute respiratory effects of particulate air pollution. , 1994, Annual review of public health.

[41]  F. Valero,et al.  STATISTICAL FORECAST MODELS FOR DAILY AIR PARTICULATE IRON AND LEAD CONCENTRATIONS FOR MADRID, SPAIN , 1992 .

[42]  Isidro A. Pérez,et al.  Forecasting particulate pollutant concentrations in a city from meteorological variables and regional weather patterns , 1990 .

[43]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[44]  Louis A. Liporace,et al.  Maximum likelihood estimation for multivariate observations of Markov sources , 1982, IEEE Trans. Inf. Theory.