Self-selection of dissipative assemblies driven by primitive chemical reaction networks

[1]  C. Brangwynne,et al.  Liquid phase condensation in cell physiology and disease , 2017, Science.

[2]  J. Boekhoven,et al.  Dissipative out-of-equilibrium assembly of man-made supramolecular materials. , 2017, Chemical Society reviews.

[3]  C. Hartley,et al.  Dissipative Assembly of Aqueous Carboxylic Acid Anhydrides Fueled by Carbodiimides. , 2017, Journal of the American Chemical Society.

[4]  A. Bausch,et al.  Non-equilibrium dissipative supramolecular materials with a tunable lifetime , 2017, Nature Communications.

[5]  Alessandro Sorrenti,et al.  Non-equilibrium steady states in supramolecular polymerization , 2017, Nature Communications.

[6]  Tom F. A. de Greef,et al.  Non-equilibrium supramolecular polymerization , 2017, Chemical Society reviews.

[7]  R. Ulijn,et al.  Dynamic peptide libraries for the discovery of supramolecular nanomaterials. , 2016, Nature nanotechnology.

[8]  Lewis J. Kraft,et al.  Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions , 2016, Nature.

[9]  A. Sato,et al.  Supramolecular pathway selection of perylenediimides mediated by chemical fuels. , 2016, Chemical communications.

[10]  S. Maiti,et al.  Dissipative self-assembly of vesicular nanoreactors. , 2016, Nature chemistry.

[11]  A. Hyman,et al.  Growth and division of active droplets provides a model for protocells , 2016, Nature Physics.

[12]  R. Pascal,et al.  Stability and its manifestation in the chemical and biological worlds. , 2015, Chemical communications.

[13]  Job Boekhoven,et al.  Transient assembly of active materials fueled by a chemical reaction , 2015, Science.

[14]  S. Otto,et al.  Supramolecular systems chemistry. , 2015, Nature nanotechnology.

[15]  K. Ruiz-Mirazo,et al.  Prebiotic systems chemistry: new perspectives for the origins of life. , 2014, Chemical reviews.

[16]  J. Sutherland,et al.  Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics , 2013, Open Biology.

[17]  Rein V. Ulijn,et al.  Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. , 2013, Journal of the American Chemical Society.

[18]  Stephen Mann,et al.  Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. , 2011, Nature chemistry.

[19]  Job Boekhoven,et al.  Dissipative self-assembly of a molecular gelator by using a chemical fuel. , 2010, Angewandte Chemie.

[20]  Christopher A Waudby,et al.  Mechanosensitive Self-Replication Driven by Self-Organization , 2010, Science.

[21]  Takashi Ikegami,et al.  Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. , 2007, Journal of the American Chemical Society.

[22]  Martin M. Hanczyc,et al.  Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division , 2003, Science.

[23]  J. Sanders,et al.  Selection and Amplification of Hosts From Dynamic Combinatorial Libraries of Macrocyclic Disulfides , 2002, Science.

[24]  A V Eliseev,et al.  Dynamic Combinatorial Chemistry , 2001, Science.

[25]  Pier Luigi Luisi,et al.  Autocatalytic self-replicating micelles as models for prebiotic structures , 1992, Nature.

[26]  D. A. Usher,et al.  Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G L Amidon,et al.  Solubility of nonelectrolytes in polar solvents II: solubility of aliphatic alcohols in water. , 1974, Journal of pharmaceutical sciences.

[28]  C. W. Hoerr,et al.  The solubilities of the normal saturated fatty acids. , 1942, The Journal of organic chemistry.

[29]  H. Lönnberg,et al.  The effect of secondary structure on cleavage of the phosphodiester bonds of RNA , 2007, Cell Biochemistry and Biophysics.

[30]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .