Optical properties of titanate-germanate glasses containing Ho3+ ions

[1]  G. Righini,et al.  The past, present and future of photonic glasses: A review in homage to the United Nations International Year of Glass 2022 , 2023, Progress in Materials Science.

[2]  G. Vinitha,et al.  Influence of holmium ions on the structural and optical properties of barium tellurite glasses , 2023, Optical Materials.

[3]  M. Khalid,et al.  Germanate glass for laser applications in ∼ 2.1 μm spectral region: A review , 2023, Heliyon.

[4]  M. Kochanowicz,et al.  Influence of TiO2 concentration on near-infrared luminescence of Er3+ ions in barium gallo-germanate glasses , 2022, Journal of Materials Research and Technology.

[5]  C. Nava-Dino,et al.  Effect of Ho3+ concentration on the luminescent and thermal stability of tellurite glasses , 2021 .

[6]  Dongdan Chen,et al.  Nd3+ doped multi-component phosphate glass multi-material fibers for 105 μm laser , 2021, Optical Materials Express.

[7]  Juncheng Liu,et al.  Green emission and laser properties of Ho3+ doped titano lead borate (TLB) glasses for colour display applications , 2021 .

[8]  B. Eraiah,et al.  Optical properties of bismuth tellurite glasses doped with holmium oxide , 2020 .

[9]  Baojiu Chen,et al.  Fluorescence decay route of optical transition calculation for trivalent rare earth ions and its application for Er3+-doped NaYF4 phosphor. , 2020, Physical chemistry chemical physics : PCCP.

[10]  M. Kuwik,et al.  Novel Multicomponent Titanate-Germanate Glasses: Synthesis, Structure, Properties, Transition Metal, and Rare Earth Doping , 2020, Materials.

[11]  M. Venkateswarlu,et al.  Spectroscopic and luminescence properties of Ho3+ ions doped Barium Lead Alumino Fluoro Borate glasses for green laser applications , 2020 .

[12]  G. Neelima,et al.  Optical and spectroscopic properties of Ho3+-doped fluorophosphate glasses for visible lighting applications , 2020 .

[13]  Baojiu Chen,et al.  Determination of Judd-Ofelt parameters for Eu3+-doped alkali borate glasses , 2019 .

[14]  Shyam Sundar Ghoshal,et al.  Intense red and green luminescence from holmium activated zinc-sulfo-boro-phosphate glass: Judd-Ofelt evaluation , 2019, Journal of Alloys and Compounds.

[15]  M. Kochanowicz,et al.  Influence of transition metal ion concentration on near-infrared emission of Ho3+ in barium gallo-germanate glasses , 2019, Journal of Alloys and Compounds.

[16]  M. Kochanowicz,et al.  Holmium doped barium gallo-germanate glasses for near-infrared luminescence at 2000 nm , 2019, Journal of Luminescence.

[17]  K. Biswas,et al.  Enhanced luminescence at 2.88 and 2.04 μm from Ho3+/Yb3+ codoped low phonon energy TeO2–TiO2–La2O3 glass , 2019, AIP Advances.

[18]  Junjie Zhang,et al.  Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate-germanate glass sensitized by Tm3+ ions , 2019, Optics & Laser Technology.

[19]  Marcin Kochanowicz,et al.  Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm , 2019, Optical Materials Express.

[20]  Bin Chen,et al.  Gain anticipation of Ho3+ in ion-exchangeable germanate waveguide glasses , 2018, Applied Physics B.

[21]  S. Ghoshal,et al.  Spectroscopic traits of holmium in magnesium zinc sulfophosphate glass host: Judd – Ofelt evaluation , 2018, Journal of Alloys and Compounds.

[22]  Baojiu Chen,et al.  A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation. , 2018, Physical chemistry chemical physics : PCCP.

[23]  Y. C. Ratnakaram,et al.  Optical spectroscopy and luminescence properties of Ho 3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications , 2018 .

[24]  Junjie Zhang,et al.  2.0 μm emission of Ho 3+ doped germanosilicate glass sensitized by non-rare-earth ion Bi: A new choice for 2.0 μm laser , 2018 .

[25]  Marcin Kochanowicz,et al.  Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+ , 2017 .

[26]  Sangwook Lee,et al.  Optical spectroscopy and emission properties of Ho3 +-doped gadolinium calcium silicoborate glasses for visible luminescent device applications , 2017 .

[27]  M. Piasecki,et al.  Amplification of green emission of Ho3+ ions in lead silicate glasses by sensitizing with Bi3+ ions , 2016 .

[28]  Lei Zhang,et al.  Spectroscopic and laser properties of Ho3+ doped lanthanum-tungsten-tellurite glass and fiber , 2016 .

[29]  Wei Lin,et al.  Tm 3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications , 2016 .

[30]  Zhongmin Yang,et al.  Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser , 2016 .

[31]  Lei Zhang,et al.  Heavily Ho 3+ -doped lead silicate glass fiber for ~2 μm fiber lasers , 2016 .

[32]  Y. C. Ratnakaram,et al.  Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center , 2015 .

[33]  Lei Zhang,et al.  Spectroscopic properties of Ho3+ and Al3+ co-doped silica glass for 2-μm laser materials , 2015 .

[34]  G. Prakash,et al.  Holmium doped Lead Tungsten Tellurite glasses for green luminescent applications , 2015 .

[35]  E. Pun,et al.  Infrared radiation properties of Ho³⁺ in multicomponent germanium tellurite glasses. , 2015, Applied optics.

[36]  Lili Hu,et al.  Spectroscopic properties and quenching mechanism of 2 μm emission in Ho^3+ doped germanate glasses and fibers , 2015 .

[37]  Junjie Zhang,et al.  Highly efficient mid-infrared 2 μm emission in Ho 3+ /Yb 3+ -codoped germanate glass , 2015 .

[38]  Junjie Zhang,et al.  Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials , 2015 .

[39]  Junjie Zhang,et al.  Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass , 2015 .

[40]  Y. C. Ratnakaram,et al.  Spectroscopic analysis of Ho3+ transitions in different modifier oxide based lithium–fluoro-borate glasses , 2014 .

[41]  Lili Hu,et al.  Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications. , 2014, Optics express.

[42]  Qianhuan Zhang,et al.  Efficient 2.0 μm fluorescence in Ho 3+ -doped fluorogermanate glass sensitized by Cr 3+ , 2014 .

[43]  Junjie Zhang,et al.  Ho³⁺Yb³⁺-codoped germanate-tellurite glasses for 2.0 μm emission performance. , 2014, Applied optics.

[44]  T. Rao,et al.  Influence of modifier oxide on Spectroscopic properties of Ho3+: V4+ co-doped Na2O–SiO2–ZrO2 glasses , 2014 .

[45]  G. Prakash,et al.  Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses , 2013 .

[46]  Zhiguang Zhou,et al.  Study on 2.0 μm fluorescence of Ho-doped water-free fluorotellurite glasses , 2013 .

[47]  C. K. Jayasankar,et al.  Spectroscopic properties of Ho3+$\mathrm{Ho}^{3+}$-doped K–Sr–Al phosphate glasses , 2013 .

[48]  W. Jin,et al.  Near- and mid-infrared photoluminescence in Ho3+ doped and Ho3+–Yb3+ codoped low-phonon-energy germanotellurite glasses , 2013 .

[49]  C. K. Jayasankar,et al.  Optical properties of Ho3+ ions in lead phosphate glasses , 2012 .

[50]  E. Pun,et al.  ~ 1.2 μm near-infrared emission and gain anticipation in Ho3+ doped heavy-metal gallate glasses , 2011 .

[51]  C. Rao,et al.  Emission features of Ho3+ ion in Nb2O5, Ta2O5 and La2O3 mixed Li2O–ZrO2–SiO2 glasses , 2011 .

[52]  Lili Hu,et al.  2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+ , 2011 .

[53]  Lili Hu,et al.  2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass , 2010 .

[54]  Jinsheng Liao,et al.  Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials. , 2010, Physical chemistry chemical physics : PCCP.

[55]  Edwin Yue-Bun Pun,et al.  Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses , 2009 .

[56]  Anant Kumar Singh,et al.  Spectroscopic properties of Ho3+ ions doped in tellurite glass. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[57]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[58]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[59]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .