Qualitative features of matrix pencils and DAEs arising in circuit dynamics

The dynamical behaviour of nonlinear electrical circuits is usually modelled in the time domain by differential–algebraic equations (DAEs). The differential–algebraic formalism drives qualitative analyses based on linearization to a matrix pencil setting. In this context, the present paper performs a spectral analysis of matrix pencils and DAEs arising in nonlinear circuit theory. Specifically, the non-singularity, hyperbolicity and asymptotic stability of equilibria are addressed in terms of circuit topology. The differential–algebraic framework puts the results beyond those already known for state-space models, unfeasible in many actual problems. The topological conditions arising in this qualitative study are proved independent of those supporting the index, and therefore they apply to both index-1 and index-2 configurations. The approach illustrates how graph theory, matrix analysis and DAE theory interact in the dynamical study of nonlinear circuits. ¶Preliminary results of this research were presented at the SCEE'04 Workshop in Capo D'Orlando, Sicilia, Italy 1.

[1]  R. E. Beardmore,et al.  The Singularity-Induced Bifurcation and its Kronecker Normal Form , 2001, SIAM J. Matrix Anal. Appl..

[2]  An-Chang Deng,et al.  Impasse points. Part I: Numerical aspects , 1989 .

[3]  F. R. Gantmakher The Theory of Matrices , 1984 .

[4]  Wolfgang Mathis,et al.  Theorie nichtlinearer Netzwerke , 1987 .

[5]  Michał Tadeusiewicz,et al.  Global and local stability of circuits containing MOS transistors , 2001 .

[6]  Caren Tischendorf On the stability of solutions of autonomous index-I tractable and quasilinear index-2 tractable DAEs , 1994 .

[7]  L. Chua,et al.  On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks , 1979 .

[8]  Ricardo Riaza,et al.  Non‐linear circuit modelling via nodal methods , 2005, Int. J. Circuit Theory Appl..

[9]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[10]  G. Reissig,et al.  Extension of the normal tree method , 1999 .

[11]  G. Chartrand Introductory Graph Theory , 1984 .

[12]  Caren Tischendorf,et al.  Topological index‐calculation of DAEs in circuit simulation , 1998 .

[13]  Ricardo Riaza Attraction Domains of Degenerate Singular Equilibria in Quasi-linear ODEs , 2004, SIAM J. Math. Anal..

[14]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[15]  R. Newcomb The semistate description of nonlinear time-variable circuits , 1981 .

[16]  Ricardo Riaza,et al.  Qualitative Properties of Equilibria in MNA Models of Electrical Circuits , 2006 .

[17]  Caren Tischendorf,et al.  Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation , 2003 .

[18]  Gunther Reissig,et al.  Extension of the normal tree method , 1999, Int. J. Circuit Theory Appl..

[19]  Leon O. Chua,et al.  Graph-theoretic properties of dynamic nonlinear networks , 1976 .

[20]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[21]  Caren Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000, Int. J. Circuit Theory Appl..

[22]  H. Boche,et al.  On singularities of autonomous implicit ordinary differential equations , 2003 .

[23]  P. Bryant,et al.  Solutions of singular constrained differential equations: A generalization of circuits containing capacitor-only loops and inductor-only cutsets , 1984 .

[24]  B. C. Haggman,et al.  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part I: Conservation laws , 1986 .

[25]  Michael M. Green,et al.  (Almost) half of any circuit's operating points are unstable , 1994 .

[26]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 2: Impact of circuit configurations and parameters , 1997 .

[27]  S. Sastry,et al.  Jump behavior of circuits and systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[28]  W. Rheinboldt,et al.  Theoretical and numerical analysis of differential-algebraic equations , 2002 .

[29]  Antonino M. Sommariva,et al.  State‐space equations of regular and strictly topologically degenerate linear lumped time‐invariant networks: the multiport method , 2001, Int. J. Circuit Theory Appl..

[30]  B. Andrásfai Graph Theory: Flows, Matrices , 1991 .

[31]  Ricardo Riaza Stability Issues in Regular and Noncritical Singular DAEs , 2002 .

[32]  Ricardo Riaza Time-domain properties of reactive dual circuits , 2006, Int. J. Circuit Theory Appl..

[33]  Roswitha März,et al.  Practical Lyapunov stability criteria for differential algebraic equations , 1994 .

[34]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[35]  Roswitha März,et al.  Criteria for the Trivial Solution of Differential Algebraic Equations with Small Nonlinearities to be Asymptotically Stable , 1998 .

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  Ricardo Riaza,et al.  A matrix pencil approach to the local stability analysis of non‐linear circuits , 2004, Int. J. Circuit Theory Appl..

[38]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[39]  R. Beardmore Double singularity-induced bifurcation points and singular Hopf bifurcations , 2000 .

[40]  Leon O. Chua,et al.  Impasse points. Part II: Analytical aspects , 1989 .

[41]  Ricardo Riaza,et al.  Singular bifurcations in higher index differential-algebraic equations , 2002 .

[42]  Jeffrey C. Lagarias,et al.  Bounds for the number of DC operating points of transistor circuits , 1999 .

[43]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[44]  H. Amann Ordinary Differential Equations , 1990 .

[45]  R. März Differential Algebraic Systems with Properly Stated Leading Term and MNA Equations , 2003 .

[46]  Michał Tadeusiewicz A method for identification of asymptotically stable equilibrium points of a certain class of dynamic circuits , 1999 .

[47]  P. J. Zufiria,et al.  Differential-algebraic equations and singular perturbation methods in recurrent neural learning , 2003 .

[48]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[49]  Marc Fosseprez,et al.  Non-linear Circuits: Qualitative Analysis of Non-linear, Non-reciprocal Circuits , 1992 .

[50]  Sebastian Reich On the local qualitative behavior of differential-algebraic equations , 1995 .

[51]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[52]  W. Mathis,et al.  A Hamiltonian formulation for complete nonlinear RLC-networks , 1997 .

[53]  C. Desoer,et al.  Trajectories of nonlinear RLC networks: A geometric approach , 1972 .

[54]  L. Trajković,et al.  A generalization of Brayton-Moser's mixed potential function , 1998 .

[55]  L. Chua,et al.  A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks , 1976 .

[56]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[57]  Michael M. Green,et al.  How to identify unstable DC operating points , 1992 .

[58]  Alan N. Willson,et al.  An algorithm for identifying unstable operating points using SPICE , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[59]  L. B. Goldgeisser,et al.  On the topology and number of operating points of MOSFET circuits , 2001 .

[60]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .