Athena Microscopic Imager investigation

[1] The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD). The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400–700 nm). The MI uses the same electronics design as the other MER cameras but has optics that yield a field of view of 31 × 31 mm across a 1024 × 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (∼2 mm precision) is achieved by moving the IDD away from a rock target after the contact sensor has been activated. The MI optics are protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500–700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. MI data will be used to place other MER instrument data in context and to aid in petrologic and geologic interpretations of rocks and soils on Mars.

[1]  F O Huck,et al.  Image quality prediction: an aid to the Viking Lander imaging investigation on Mars. , 1976, Applied optics.

[2]  B. White,et al.  Saltation threshold on Mars - The effect of interparticle force, surface roughness, and low atmospheric density. [from wind-tunnel experiments] , 1976 .

[3]  F. O. Huck,et al.  Calibration and performance of the Viking Lander cameras , 1977 .

[4]  David C. Pieri,et al.  Particle motion on Mars inferred from the Viking Lander cameras , 1977 .

[5]  Ronald Greeley,et al.  Threshold windspeeds for sand on Mars: Wind tunnel simulations , 1980 .

[6]  F O Huck,et al.  Imaging system design for improved information capacity. , 1984, Applied optics.

[7]  J. Janesick,et al.  Charge-Coupled-Device Charge-Collection Efficiency And The Photon-Transfer Technique , 1987 .

[8]  Friedrich O. Huck,et al.  Image gathering and restoration: information and visual quality , 1989 .

[9]  Raymond E. Arvidson,et al.  The Martian surface as imaged, sampled, and analyzed by the Viking landers , 1989 .

[10]  K. Edgett,et al.  THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .

[11]  Ronald Greeley,et al.  Martian aeolian processes, sediments, and features. , 1992 .

[12]  K. Edgett,et al.  Mars aeolian sand: Regional variations among dark-hued crater floor features , 1994 .

[13]  F. Lucchi Sedimentographica: A Photographic Atlas of Sedimentary Structures , 1995 .

[14]  J. M. Knudsen,et al.  The magnetic properties experiments on Mars Pathfinder , 1996 .

[15]  R. Kirk,et al.  The Imager for Mars Pathfinder experiment , 1997 .

[16]  E. Eliason Production of Digital Image Models Using the ISIS System , 1997 .

[17]  Karl J. Becker,et al.  ISIS - A Software Architecture for Processing Planetary Images , 1997 .

[18]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[19]  M. Sims,et al.  The Mars 2001 Athena Precursor Experiment (APEX) , 1999 .

[20]  J. Maki,et al.  The color of Mars: Spectrophotometric measurements at the Pathfinder landing site , 1999 .

[21]  A. McEwen,et al.  Bright dunes on Mars , 1999, Nature.

[22]  Joy A. Crisp,et al.  Soil‐like deposits observed by Sojourner, the Pathfinder rover , 1999 .

[23]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[24]  Trent M. Hare,et al.  Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions , 1999 .

[25]  A. F. C. Haldemann,et al.  Ventifacts at the Pathfinder landing site , 1999 .

[26]  Trent M. Hare,et al.  Digital mapping of the Mars Pathfinder landing site: Design, acquisition, and derivation of cartographic products for science applications , 1999 .

[27]  Nicolas Thomas,et al.  The MVACS Robotic Arm Camera , 2001 .

[28]  Edward C. Hagerott,et al.  Optical designs for the Mars '03 rover cameras , 2001, Optics + Photonics.

[29]  Stephen Gorevan,et al.  FIDO science payload simulating the Athena Payload , 2002 .

[30]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[31]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[32]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[33]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[34]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[35]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[36]  Guy Webster,et al.  Mars Exploration Rover Mission , 2005 .