Migration of massive black hole binaries in self-gravitating accretion discs: Retrograde versus prograde

We study the interplay between mass transfer, accretion and gravitational torques onto a black hole binary migrating in a self-gravitating, retrograde circumbinary disc. A direct comparison with an identical prograde disc shows that: (i) because of the absence of resonances, the cavity size is a factor a(1+e) smaller for retrograde discs; (ii) nonetheless the shrinkage of a circular binary semi–major axis a is identical in both cases; (iii) a circular binary in a retrograde disc remains circular while eccentric binaries grow more eccentric. For non-circular binaries, we measure the orbital decay rates and the eccentricity growth rates to be exponential as long as the binary orbits in the plane of its disc. Additionally, for these co-planar systems, we find that interaction (� non–zero torque) stems only from the cavity edge plus a(1+e) in the disc, i.e. for dynamical purposes, the disc can be treated as a annulus of small radial extent. We find that simple ’dust’ models in which the binary- disc interaction is purely gravitational can account for all main numerical results, both for prograde and retrograde discs. Furthermore, we discuss the possibility of an instability occurring for highly eccentric binaries causing it to leave the disc plane, secularly tilt and converge to a prograde system. Our results suggest that there are two stable configurations for binaries in self-gravitating discs: the special circular retrograde case and an eccentric (e� 0.6) prograde configuration as a stable attractor.

[1]  Daniel J. Price,et al.  Tearing up the disc: misaligned accretion on to a binary , 2013, 1307.0010.

[2]  Z. Haiman,et al.  Gas pile‐up, gap overflow and Type 1.5 migration in circumbinary discs: general theory , 2012, 1205.4714.

[3]  C. Nixon Stable counteralignment of a circumbinary disc , 2012, 1204.4185.

[4]  P. Amaro-Seoane,et al.  Evolution of binary black holes in self gravitating discs. Dissecting the torques , 2012, 1202.6063.

[5]  Y. Levin,et al.  MAGNETICALLY LEVITATING ACCRETION DISKS AROUND SUPERMASSIVE BLACK HOLES , 2012, 1201.4873.

[6]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[7]  J. Krolik,et al.  THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CIRCUMBINARY ACCRETION DISKS: DISK STRUCTURES AND ANGULAR MOMENTUM TRANSPORT , 2011, 1110.4866.

[8]  J. Papaloizou,et al.  Outward migration of a giant planet with a gravitationally unstable gap edge , 2011, 1112.1704.

[9]  M. Colpi,et al.  Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs , 2011, 1104.3868.

[10]  A. R. King,et al.  Retrograde accretion and merging supermassive black holes , 2010, 1011.1914.

[11]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[12]  R. Nelson,et al.  Evolution of warped and twisted accretion discs in close binary systems , 2009, 0912.3220.

[13]  Astronomy,et al.  Black hole mergers: can gas discs solve the ‘final parsec’ problem? , 2009, 0906.0737.

[14]  Z. Haiman,et al.  THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.

[15]  K. Hayasaki,et al.  A New Mechanism for Massive Binary Black-Hole Evolution , 2008, 0805.3408.

[16]  P. Armitage,et al.  Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.

[17]  AN ECCENTRIC CIRCUMBINARY ACCRETION DISK AND THE DETECTION OF BINARY MASSIVE BLACK HOLES , 2006, astro-ph/0607467.

[18]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[19]  Shin Mineshige,et al.  A Supermassive Binary Black Hole with Triple Disks , 2007, 0708.2555.

[20]  Marek Sikora,et al.  Black Hole Spin and Galactic Morphology , 2007, 0706.3900.

[21]  M. Colpi,et al.  Supermassive black hole binaries in gaseous and stellar circumnuclear discs: orbital dynamics and gas accretion , 2006, astro-ph/0612505.

[22]  Binary Black Hole Accretion Flows in Merged Galactic Nuclei , 2006, astro-ph/0609144.

[23]  P. Madau,et al.  Interaction of Massive Black Hole Binaries with Their Stellar Environment. I. Ejection of Hypervelocity Stars , 2006, astro-ph/0604299.

[24]  P. J. Armitage,et al.  Investigating fragmentation conditions in self-gravitating accretion discs , 2005 .

[25]  P. Armitage,et al.  Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich Mergers , 2005, astro-ph/0508493.

[26]  J. Pringle,et al.  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[27]  J. Cuadra,et al.  Galactic Centre stellar winds and Sgr A* accretion , 2005 .

[28]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[29]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[30]  Jeremy Goodman,et al.  Self-gravity and quasi-stellar object discs , 2003 .

[31]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[32]  Jeremy Goodman,et al.  Selfgravity and QSO disks , 2002, astro-ph/0201001.

[33]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks , 2001, astro-ph/0101501.

[34]  Binary Black Hole Mergers from Planet-like Migrations. , 1999, The Astrophysical journal.

[35]  C. Murray,et al.  Solar System Dynamics: Solar System Data , 2000 .

[36]  J. Papaloizou,et al.  THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.

[37]  J. Papaloizou,et al.  The hydrodynamical response of a tilted circumbinary disc: linear theory and non-linear numerical simulations , 1996, astro-ph/9609145.

[38]  S. Lubow,et al.  Mass Flow through Gaps in Circumbinary Disks , 1996 .

[39]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[40]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[41]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[42]  D. Syer,et al.  Satellites in discs: regulating the accretion luminosity , 1995, astro-ph/9505021.

[43]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[44]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[45]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[46]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[47]  J. Papaloizou,et al.  Tidal torques on accretion discs in close binary systems. , 1977 .

[48]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .