Phase stability of the Hf-Nb system: From first-principles to CALPHAD

Hf-Nb is representative of a large number of alloy systems where the phase diagram is known but experimentally measured thermodynamic data is unavailable. This motivated us to investigate solid-state phase stability of this system employing ab-initio techniques based on electronic density functional theory (DFT). The total energy calculations are performed at the generalized gradient approximation level to account for non-locality of the exchange-correlation functional within DFT. The zero-temperature heat of formation of bcc-, hcp-and fcc-based ordered phases (virtual) and the finite temperature heat of mixing of bcc, hcp and fcc solid solutions are calculated. The latter properties are obtained by the cluster expansion technique coupled with Monte-Carlo simulations. In an effort to build multicomponent thermodynamic and kinetic databases containing Hf and Nb, we demonstrate a hybrid approach to integrate the ab-initio results with CALPHAD formalism to obtain thermodynamic data for the Hf-Nb system. The similarities and differences between previous CALPHAD assessment and our results are discussed.

[1]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[2]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[3]  A. Dinsdale SGTE data for pure elements , 1991 .

[4]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[5]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[6]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  Gerbrand Ceder,et al.  First-principles alloy theory in oxides , 2000 .

[9]  G. Grimvall,et al.  Reconciling ab initio and semiempirical approaches to lattice stabilities , 1998 .

[10]  O. Kubaschewski Titanium : physico-chemical properties of its compounds and alloys , 1975 .

[11]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[12]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[13]  R. G. Ross,et al.  High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten , 1963 .

[14]  W. A. Oates,et al.  Using Ab Initio Calculations in the Calphad Environment , 2001 .

[15]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[16]  A. Guillermet Gibbs energy coupling of phase stability and thermochemistry in the HfNb system , 1996 .

[17]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[18]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[19]  M. Manghnani,et al.  Isothermal compression of bcc transition metals to 100 kbar , 1978 .

[20]  R. E. Watson,et al.  Optimized predictions for heats of formation of transition-metal alloys II , 1981 .

[21]  K. Salama,et al.  Elastic Constants of Aluminum , 1964 .

[22]  V. Ozoliņš,et al.  Large vibrational effects upon calculated phase boundaries in Al-Sc. , 2001, Physical review letters.

[23]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[24]  A. A. Maradudin,et al.  Theory of lattice dynamics in the harmonic approximation , 1971 .

[25]  E. Fisher,et al.  Single-Crystal Elastic Moduli and the hcp --> bcc Transformation in Ti, Zr, and Hf , 1964 .

[26]  C. Sigli,et al.  First-principles study of the solubility of Zr in Al , 2002, cond-mat/0401430.

[27]  E. Fisher,et al.  Pressure derivatives of the elastic moduli of niobium and tantalum , 1976 .

[28]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[29]  V. Ozoliņš,et al.  Incorporating first-principles energetics in computational thermodynamics approaches , 2002 .

[30]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[31]  A. Zunger Spontaneous Atomic Ordering in Semiconductor Alloys: Causes, Carriers, and Consequences , 1997 .

[32]  R. Carpenter,et al.  Phase relations in concentrated Ta-Hf and Nb-Hf alloys , 1971 .

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  C. Wolverton Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys , 2001 .

[35]  R. E. Watson,et al.  Structural instabilities of excited phases , 1997 .

[36]  Watson,et al.  Local stability of nonequilibrium phases. , 1994, Physical review letters.

[37]  Gregory B Olson,et al.  Computational thermodynamics and the kinetics of martensitic transformation , 2001 .

[38]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[39]  C. Wolverton,et al.  Entropically favored ordering: the metallurgy of Al(2)Cu revisited. , 2001, Physical review letters.

[40]  V. Ozoliņš,et al.  A first-principles approach to modeling alloy phase equilibria , 2001 .

[41]  K. Carroll Elastic Constants of Niobium from 4.2° to 300°K , 1965 .

[42]  Zi-kui Liu,et al.  Thermodynamics of the Cr-Ta-W system by combining the Ab Initio and CALPHAD methods , 2001 .

[43]  H. Flower,et al.  Martensitic transformations in Ti-Mo alloys , 1979 .

[44]  H. Okamoto The Hf-Nb (Hafnium-Niobium) system , 1991 .

[45]  A. Pasturel,et al.  Trends in cohesive energy of transition metal alloys , 1985 .

[46]  R. Cahn Hafnium: Physico-chemical properties of its compounds and alloys , 1983 .

[47]  Antonios Gonis,et al.  Statics and dynamics of alloy phase transformations , 1994 .

[48]  L. Höglund,et al.  Applications of computational thermodynamics , 2002 .

[49]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[50]  L. Höglund,et al.  DICTRA, a tool for simulation of diffusional transformations in alloys , 2000 .

[51]  M. Asta Structural, vibrational, and thermodynamic properties of Al-Sc alloys and intermetallic compounds , 2001 .

[52]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[53]  J. H. Westbrook,et al.  Intermetallic compounds : principles and practice , 2002 .

[54]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[55]  D. Steinberg Some observations regarding the pressure dependence of the bulk modulus , 1982 .

[56]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[57]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[58]  R. E. Watson,et al.  Transition-metals and their alloys , 2001 .

[59]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .