Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system
暂无分享,去创建一个
Cheng Wang | Steven M. Wise | Wenbin Chen | Yuan Liu | Cheng Wang | S. Wise | Wenbin Chen | Yuan Liu
[1] Endre Süli,et al. Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..
[2] Charles M. Elliott,et al. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .
[3] Robert Nürnberg,et al. Adaptive finite element methods for Cahn-Hilliard equations , 2008 .
[4] William Layton,et al. Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .
[5] Steven M. Wise,et al. Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..
[6] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[7] Xiaofeng Yang,et al. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .
[8] Cheng Wang,et al. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..
[9] Steven M. Wise,et al. Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully Discrete Finite Element Approximation , 2011, SIAM J. Numer. Anal..
[10] Robert Nürnberg,et al. A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy , 2009 .
[11] Cheng Wang,et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..
[12] Hao Wu,et al. Long-time behavior for the Hele-Shaw-Cahn-Hilliard system , 2012, Asymptot. Anal..
[13] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[14] Rolf Rannacher,et al. On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .
[15] Charles M. Elliott,et al. A second order splitting method for the Cahn-Hilliard equation , 1989 .
[16] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[17] R. Nicolaides,et al. Numerical analysis of a continuum model of phase transition , 1991 .
[18] Khaled Omrani,et al. Finite difference approximate solutions for the Cahn‐Hilliard equation , 2007 .
[19] C. M. Elliott,et al. Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .
[20] Cheng Wang,et al. Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations , 2014, J. Comput. Phys..
[21] Li-ping He,et al. Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation , 2009, J. Sci. Comput..
[22] Cheng Wang,et al. A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..
[23] Jie Shen,et al. An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System , 2013 .
[24] Jie Shen,et al. Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..
[25] Haijun Wu,et al. A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE CAHN-HILLIARD EQUATION AND THE HELE-SHAW FLOW * , 2007, 0708.2116.
[26] Steven M. Wise,et al. Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Darcy-Stokes System , 2013, SIAM J. Numer. Anal..
[27] Cheng Wang,et al. A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.
[28] Cheng Wang,et al. A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2014, J. Sci. Comput..
[29] Steven M. Wise,et al. Unconditionally stable schemes for equations of thin film epitaxy , 2010 .
[30] Xiaobing Feng,et al. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..
[31] John W. Barrett,et al. An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1999 .
[32] Steven M. Wise,et al. An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..
[33] Cheng Wang,et al. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation , 2012, J. Comput. Phys..
[34] Cheng Wang,et al. Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation , 2015, Math. Comput..
[35] S. M. Wise,et al. Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..
[36] Steven M. Wise,et al. Global Smooth Solutions of the Three-dimensional Modified Phase Field Crystal Equation , 2010 .
[37] Zhifei Zhang,et al. Well-posedness of the Hele–Shaw–Cahn–Hilliard system , 2010, 1012.2944.
[38] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[39] Jürgen Roßmann,et al. Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.