Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system

We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard $$\ell ^\infty (0,T;L^2) \cap \ell ^2 (0,T; H^2)$$ℓ∞(0,T;L2)∩ℓ2(0,T;H2) error estimate, we perform a discrete $$\ell ^\infty (0,T; H^1) \cap \ell ^2 (0,T; H^3 )$$ℓ∞(0,T;H1)∩ℓ2(0,T;H3) error estimate for the phase variable, through an $$L^2$$L2 inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step $$\tau $$τ in terms of the spatial resolution h) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian $$\Delta _h$$Δh of the numerical solution, such that $$\Delta _h \phi \in S_h$$Δhϕ∈Sh, for every $$\phi \in S_h$$ϕ∈Sh, where $$S_h$$Sh is the finite element space.

[1]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[2]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[3]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[4]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[5]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[6]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[7]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[8]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[9]  Steven M. Wise,et al.  Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully Discrete Finite Element Approximation , 2011, SIAM J. Numer. Anal..

[10]  Robert Nürnberg,et al.  A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy , 2009 .

[11]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[12]  Hao Wu,et al.  Long-time behavior for the Hele-Shaw-Cahn-Hilliard system , 2012, Asymptot. Anal..

[13]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[14]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[15]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[18]  Khaled Omrani,et al.  Finite difference approximate solutions for the Cahn‐Hilliard equation , 2007 .

[19]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[20]  Cheng Wang,et al.  Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations , 2014, J. Comput. Phys..

[21]  Li-ping He,et al.  Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation , 2009, J. Sci. Comput..

[22]  Cheng Wang,et al.  A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..

[23]  Jie Shen,et al.  An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System , 2013 .

[24]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[25]  Haijun Wu,et al.  A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE CAHN-HILLIARD EQUATION AND THE HELE-SHAW FLOW * , 2007, 0708.2116.

[26]  Steven M. Wise,et al.  Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Darcy-Stokes System , 2013, SIAM J. Numer. Anal..

[27]  Cheng Wang,et al.  A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.

[28]  Cheng Wang,et al.  A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2014, J. Sci. Comput..

[29]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[30]  Xiaobing Feng,et al.  Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..

[31]  John W. Barrett,et al.  An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1999 .

[32]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[33]  Cheng Wang,et al.  Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation , 2012, J. Comput. Phys..

[34]  Cheng Wang,et al.  Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation , 2015, Math. Comput..

[35]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[36]  Steven M. Wise,et al.  Global Smooth Solutions of the Three-dimensional Modified Phase Field Crystal Equation , 2010 .

[37]  Zhifei Zhang,et al.  Well-posedness of the Hele–Shaw–Cahn–Hilliard system , 2010, 1012.2944.

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  Jürgen Roßmann,et al.  Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.