Study of the Origin of Bending Induced by Bimetallic Effect on Microcantilever

An analytical model for predicting the deflection and force of a bimaterial cantilever is presented. We introduce the clamping effect characterised by an axial load upon temperature changes. This new approach predicts a non linear thermal dependence of cantilever strain. A profilometry technique was used to measure the thermal strain. Comparison with experimental results is used to verify the model. The concordance of the analytical model presented with experimental measurements is better than 10%..

[1]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[2]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[3]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[4]  Shubham Saxena,et al.  Nanoscale thermal analysis of an energetic material. , 2006, Nano letters.

[5]  Eric Bourillot,et al.  Effects of temperature and pressure on microcantilever resonance response. , 2003, Ultramicroscopy.

[6]  Bernd Gotsmann,et al.  Thermally activated nanowear modes of a polymer surface induced by a heated tip. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[7]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[8]  Javier Tamayo,et al.  Real-time profile of microcantilevers for sensing applications , 2005 .

[9]  Teodor Gotszalk,et al.  Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection , 2001 .

[10]  T. Thundat,et al.  Detection of trinitrotoluene via deflagration on a microcantilever , 2004 .

[11]  Todd Sulchek,et al.  Dual integrated actuators for extended range high speed atomic force microscopy , 1999 .

[12]  Ya-Pu Zhao,et al.  Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer , 2006 .

[13]  Bernd Gotsmann,et al.  Exploiting Chemical Switching in a Diels–Alder Polymer for Nanoscale Probe Lithography and Data Storage , 2006 .

[14]  Chun-Hway Hsueh Modeling of Elastic Deformation of Multilayers Due to Residual Stresses and External Bending , 2002 .

[15]  Brent A. Nelson,et al.  Nanoscale deposition of solid inks via thermal dip pen nanolithography , 2004 .

[16]  Ephraim Suhir,et al.  Stresses in Bi-Metal Thermostats , 1986 .

[17]  Jan Kuzmik,et al.  Thermal actuation of a GaAs cantilever beam , 2000 .

[18]  J. Shirakashi,et al.  SPM local oxidation nanolithography with active control of cantilever dynamics , 2007 .

[19]  Chad A. Mirkin,et al.  Thermally actuated probe array for parallel dip-pen nanolithography , 2004 .

[20]  Anja Boisen,et al.  A longitudinal thermal actuation principle for mass detection using a resonant micro-cantilever in a fluid medium , 2004 .

[21]  Thomas W. Kenny,et al.  Atomic force microscope cantilevers for combined thermomechanical data writing and reading , 2001 .

[22]  J. Moreland,et al.  Microwave power imaging with ferromagnetic calorimeter probes on bimaterial cantilevers , 2005 .

[23]  Wen Hwa Chu,et al.  Analysis of tip deflection and force of a bimetallic cantilever microactuator , 1993 .

[24]  Daniel Rugar,et al.  TIP-BASED DATA STORAGE USING MICROMECHANICAL CANTILEVERS , 1995 .

[25]  H. K. Wickramasinghe,et al.  Scanning probe microscopy of thermal conductivity and subsurface properties , 1992 .

[26]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[27]  Jonathan S. Colton,et al.  Influence of surface stress on the resonance behavior of microcantilevers , 2005 .