7 – Progress toward a Theoretical Model for Electroporation Mechanism: Membrane Electrical Behavior and Molecular Transport

[1]  James C. Weaver,et al.  Decreased bilayer stability due to transmembrane potentials , 1981 .

[2]  James C. Weaver,et al.  Theory of Electroporation , 1989 .

[3]  H. Itoh,et al.  Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. , 1988, Biophysical journal.

[4]  A. Parsegian,et al.  Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems , 1969, Nature.

[5]  T. Tsong,et al.  Formation and resealing of pores of controlled sizes in human erythrocyte membrane , 1977, Nature.

[6]  S. L. Hartford,et al.  Electrophoretic light scattering on calf thymus deoxyribonucleic acdi and tobacco mosaic virus. , 1975, Macromolecules.

[7]  J. Weaver,et al.  A quantitative theory of reversible electrical breakdown in bilayer membranes , 1986 .

[8]  Peter C. Jordan Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels. , 1984, Biophysical journal.

[9]  D. Dimitrov,et al.  Membrane electroporation--fast molecular exchange by electroosmosis. , 1990, Biochimica et biophysica acta.

[10]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[11]  J. Weaver,et al.  The number of molecules taken up by electroporated cells: quantitative determination , 1989, FEBS letters.

[12]  L. Loew,et al.  Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. , 1989, Biophysical journal.

[13]  J. Weaver ELECTROPORATION: A NEW PHENOMENON TO CONSIDER IN MEDICAL TECHNOLOGY , 1990 .

[14]  James C. Weaver,et al.  Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes☆ , 1991 .

[15]  I. Tsoneva,et al.  Effective production by electrofusion of hybridomas secreting monoclonal antibodies against Hc-antigen of Salmonella , 1990 .

[16]  J. Litster,et al.  Stability of lipid bilayers and red blood cell membranes , 1975 .

[17]  F. Conti,et al.  Reversible electrical breakdown of squid giant axon membrane. , 1981, Biochimica et biophysica acta.

[18]  J. Newman Resistance for Flow of Current to a Disk , 1966 .

[19]  J. Weaver,et al.  Transient aqueous pores in bilayer membranes: A statistical theory , 1986 .

[20]  Sugár Ip The effects of external fields on the structure of lipid bilayers. , 1981 .

[21]  L. Chernomordik,et al.  Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. , 1988, Biochimica et biophysica acta.

[22]  E. M. Renkin,et al.  FILTRATION, DIFFUSION, AND MOLECULAR SIEVING THROUGH POROUS CELLULOSE MEMBRANES , 1954, The Journal of general physiology.

[23]  J. Crowley,et al.  Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. , 1973, Biophysical journal.

[24]  Y. Chizmadzhev,et al.  Electrical Breakdown of Lipid Bilayer Membranes Phenomenology and Mechanism , 1989 .

[25]  M. Lieber,et al.  Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts , 1986, FEBS letters.

[26]  E. Neumann,et al.  Gene transfer into mouse lyoma cells by electroporation in high electric fields. , 1982, The EMBO journal.

[27]  T. Reese,et al.  Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. , 1990, Biophysical journal.

[28]  V. F. Pastushenko,et al.  247 - Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation , 1979 .

[29]  J. Weaver,et al.  Electroporation: High frequency of occurrence of a transient high‐permeability state in erythrocytes and intact yeast , 1988, FEBS letters.

[30]  R. Stampflj,et al.  Reversible electrical breakdown of the excitable membrane of a Ranvier node , 1958 .

[31]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[32]  Peter C. Jordan Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. , 1983, Biophysical journal.

[33]  E. Neumann,et al.  Stochastic model for electric field-induced membrane pores. Electroporation. , 1984, Biophysical chemistry.

[34]  M. R. Tarasevich,et al.  246 - Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion , 1979 .

[35]  R I Macey,et al.  The N-shaped current-potential characteristic in frog skin. I. Time development during step voltage clamp. , 1969, Biophysical journal.

[36]  R. Benz,et al.  Relaxation studies on cell membranes and lipid bilayers in the high electric field range , 1980 .

[37]  James C. Weaver,et al.  Electroporation: The population distribution of macromolecular uptake and shape changes in red blood cells following a single 50 μs square wave pulse☆ , 1988 .

[38]  H. Potter,et al.  Electroporation in biology: methods, applications, and instrumentation. , 1988, Analytical biochemistry.

[39]  Peter C. Jordan,et al.  Electrostatic modeling of ion pores. Multipolar sources. , 1987, Biophysical chemistry.

[40]  J. Weaver,et al.  Tissue electroporation. Observation of reversible electrical breakdown in viable frog skin. , 1989, Biophysical journal.