Cheap Design and Behavioral Diversity for Autonomous Adaptive Robots

The temperature of a dry etch process of a semiconductor substrate in a plasma etch chamber is controlled to maintain selectivity while also providing a high etch rate by introducing one or more cooling steps into the etch process. To maintain selectivity of the etch as well as a high rate of etch, the formation of plasma is terminated prior to exceeding a predetermined maximum temperature at at least one selected location in the chamber. The temperature at the selected location is reduced prior to the resumption of plasma flow and etching. The plasma etch is then continued, and may optionally be terminated again to permit cooling, as needed, until etching has been completed.

[1]  Heinrich H. Bülthoff,et al.  Modeling Obstacle Avoidance Behavior of Files Using an Adaptive Autonomous Agent , 1997, ICANN.

[2]  Dimitrios Lambrinos,et al.  Cheap Vision-Exploiting Ecological Niche and Morphology , 2000, SOFSEM.

[3]  R. Pfeifer,et al.  Exploiting body dynamics for controlling a running quadruped robot , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[4]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[5]  Robert Ringrose,et al.  Self-stabilizing running , 1997, Proceedings of International Conference on Robotics and Automation.

[6]  Fumiya Iida,et al.  Embodied Artificial Intelligence: Trends and Challenges , 2003, Embodied Artificial Intelligence.

[7]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[8]  Alexandre Bernardino,et al.  Visual station keeping for floating robots in unstructured environments , 2002, Robotics Auton. Syst..

[9]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[10]  M. Srinivasan,et al.  Reflective surfaces for panoramic imaging. , 1997, Applied optics.

[11]  R. Full,et al.  The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners , 1999 .

[12]  Y. Kuniyoshi,et al.  Embodied Artificial Intelligence , 2004, Lecture Notes in Computer Science.

[13]  F. Iida,et al.  Control of Lateral Bounding for a Pendulum Driven Hopping Robot , 2002 .

[14]  A. Borst,et al.  Detecting visual motion: theory and models. , 1993, Reviews of oculomotor research.

[15]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[16]  Shigeo Hirose,et al.  Biologically Inspired Robots: Snake-Like Locomotors and Manipulators , 1993 .

[17]  Tsutomu Mita,et al.  ‘Kenken’—A Biologically Inspired One-Legged Running Robot , 2002 .

[18]  Fumiya Iida,et al.  "Cheap" Rapid Locomotion of a Quadruped Robot: Self-Stabilization of Bounding Gait , 2004 .

[19]  Giorgio Metta,et al.  Better Vision through Manipulation , 2003, Adapt. Behav..

[20]  Giorgio Metta,et al.  Early integration of vision and manipulation , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[21]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[22]  Martin Buehler,et al.  SCOUT: a simple quadruped that walks, climbs, and runs , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  Fumiya Iida,et al.  Goal-Directed Navigation of an Autonomous Flying Robot Using Biologically Inspired Cheap Vision , 2001 .

[24]  M. Vukobratovic,et al.  Dynamic control of unstable locomotion robots , 1975 .

[25]  Thomas Netter,et al.  A robotic aircraft that follows terrain using a neuromorphic eye , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Christof Koch,et al.  A Neuromorphic Visual Motion Sensor For Real-World Robots , 1998 .

[27]  Fumiya Iida,et al.  Navigation in an autonomous flying robot by using a biologically inspired visual odometer , 2000, SPIE Optics East.

[28]  J. Flanagan,et al.  Hand and brain : the neurophysiology and psychology of hand movements , 1996 .

[29]  Z. Pylyshyn Robot's Dilemma: The Frame Problem in Artificial Intelligence , 1987 .

[30]  Heinrich H. Bülthoff,et al.  On robots and flies: Modeling the visual orientation behavior of flies , 1999, Robotics Auton. Syst..

[31]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[32]  Fumiya Iida,et al.  Exploiting Friction for the Locomotion of a Hopping Robot Fumiya Iida , 2003 .

[33]  Jonathan E. Clark,et al.  Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing , 2002 .

[34]  Owen Holland,et al.  The Future of Embodied Artificial Intelligence: Machine Consciousness? , 2003, Embodied Artificial Intelligence.

[35]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[36]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[37]  Marc H. Raibert,et al.  Experiments in Balance With a 2D One-Legged Hopping Machine , 1984 .

[38]  Hiroshi Yokoi,et al.  An artificial whisker sensor for robotics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Minoru Asada,et al.  Is it my body? Body extraction from uninterpreted sensory data based on the invariance of multiple sensory attributes , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[40]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[41]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[42]  Marc H. Raibert,et al.  Trotting and Bounding in a Planar Two-legged Model , 1985 .

[43]  W. Tuckwell,et al.  The Honey Bee , 1891, Nature.

[44]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[45]  Robert Playter,et al.  Passive Dynamics in the Control of Gymnastic Maneuvers , 1995 .

[46]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[47]  Masayuki Inaba,et al.  From visuo-motor self learning to early imitation-a neural architecture for humanoid learning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[48]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[49]  Yasuo Kuniyoshi,et al.  From Humanoid Embodiment to Theory of Mind , 2003, Embodied Artificial Intelligence.

[50]  Fumiya Iida,et al.  Morphological Computation: Connecting Body, Brain, and Environment (特集:ロボティクスと神経科学) , 2005 .

[51]  Ryota Hayashi,et al.  High-performance jumping movements by pendulum-type jumping machines , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[52]  T. McMahon,et al.  The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.

[53]  Karsten Berns,et al.  Standing up with Motor Primitives , 2005, CLAWAR.

[54]  Takeo Kanade,et al.  A visual odometer for autonomous helicopter flight , 1999, Robotics Auton. Syst..

[55]  J. Maienschein Growth of biological thought , 1994, Nature.

[56]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[57]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[58]  Yasuo Kuniyoshi,et al.  Embedded neural networks: exploiting constraints , 1998, Neural Networks.

[59]  Simon Fürst,et al.  A vision based navigation system for autonomous aircraft , 1999, Robotics Auton. Syst..

[60]  Martijn Wisse,et al.  Design and Construction of MIKE; a 2-D Autonomous Biped Based on Passive Dynamic Walking , 2006 .

[61]  R. M. Alexander Elastic Energy Stores in Running Vertebrates , 1984 .

[62]  Olaf Sporns,et al.  Methods for quantifying the informational structure of sensory and motor data , 2007, Neuroinformatics.

[63]  Alexa Riehle,et al.  Directionally Selective Motion Detection by Insect Neurons , 1989 .

[64]  Fumiya Iida,et al.  New Robotics: Design Principles for Intelligent Systems , 2005, Artificial Life.

[65]  Chandana Paul,et al.  Design and control of a pendulum driven hopping robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[66]  Thomas A. McMahon,et al.  Muscles, Reflexes, and Locomotion , 1984 .

[67]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[68]  Thomas P. von Hoff,et al.  Adaptive step-size control in blind source separation , 2002, Neurocomputing.

[69]  R. Blickhan,et al.  Brain or muscles , 2003 .

[70]  R. McN. Alexander,et al.  Three Uses for Springs in Legged Locomotion , 1990, Int. J. Robotics Res..

[71]  Heinrich H. Bülthoff,et al.  Insect Inspired Visual Control of Translatory Flight , 2001, ECAL.

[72]  Reinhard Blickhan,et al.  A movement criterion for running. , 2002, Journal of biomechanics.

[73]  Fabrizio Mura,et al.  Visual control of altitude and speed in a flying agent , 1994 .

[74]  Kunikatsu Takase,et al.  Three-dimensional adaptive dynamic walking of a quadruped - rolling motion feedback to CPGs controlling pitching motion , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[75]  Wenwei Yu,et al.  Mutual Adaptation in a Prosthetics Application , 2003, Embodied Artificial Intelligence.

[76]  Hugh M. Herr,et al.  A Trotting Horse Model , 2000, Int. J. Robotics Res..

[77]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[78]  F. Iida,et al.  Iterative Product Engineering : Evolutionary Robot Design , 2002 .

[79]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[80]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[81]  Fumiya Iida,et al.  Self-Stabilization and Behavioral Diversity of Embodied Adaptive Locomotion , 2004, Embodied Artificial Intelligence.

[82]  H. Benjamin Brown,et al.  Experiments in Balance with a 3D One-Legged Hopping Machine , 1984 .

[83]  Miriam Fend,et al.  Whisker-Based Texture Discrimination on a Mobile Robot , 2005, ECAL.

[84]  Daniel M Wolpert,et al.  Role of uncertainty in sensorimotor control. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  R. Pfeifer,et al.  “ Cheap ” Underwater Locomotion : Morphological Properties and Behavioral Diversity , 2005 .

[86]  George A. Bekey,et al.  The USC autonomous flying vehicle: an experiment in real-time behavior-based control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[87]  Svetha Venkatesh,et al.  Robot navigation inspired by principles of insect vision , 1999, Robotics Auton. Syst..

[88]  Rodney A. Brooks,et al.  Building brains for bodies , 1995, Auton. Robots.

[89]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[90]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[91]  Luc Berthouze,et al.  On the Interplay Between Morphological, Neural, and Environmental Dynamics: A Robotic Case Study , 2002, Adapt. Behav..

[92]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[93]  Mandyam V. Srinivasan,et al.  Motion detection in insect orientation and navigation , 1999, Vision Research.

[94]  Giulio Sandini,et al.  Divergent stereo for robot navigation: learning from bees , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[95]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[96]  Koh Hosoda,et al.  Robot Finger Design for Developmental Tactile Interaction: Anthropomorphic Robotic Soft Fingertip with Randomly Distributed Receptors , 2003, Embodied Artificial Intelligence.

[97]  Mandyam V. Srinivasan,et al.  Robot Navigation by Visual Dead-Reckoning Inspiration From Insects , 1997, Int. J. Pattern Recognit. Artif. Intell..

[98]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[99]  Samuel Rossel,et al.  Navigation by bees using polarized skylight , 1993 .

[100]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[101]  F. Iida Cheap Design Approach to Adaptive Behavior : Walking and Sensing through Body Dynamics , 2005 .

[102]  Kiyoshi Ioi,et al.  Design of A Gravitational Wheeled Type Robot , 2001 .

[103]  Rolf Pfeifer,et al.  An Optimal Sensor Morphology Improves Adaptability of Neural Network Controllers , 2002, ICANN.

[104]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[105]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[106]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[107]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[108]  Fumiya Iida,et al.  Biologically inspired visual odometer for navigation of a flying robot , 2003, Robotics Auton. Syst..

[109]  Akio Ishiguro,et al.  How Should Control and Body Systems Be Coupled? A Robotic Case Study , 2003, Embodied Artificial Intelligence.

[110]  Martin Buehler,et al.  On the Dynamics of Bounding and Extensions: Towards the Half-Bound and Gallop Gaits , 2006 .

[111]  Giulio Sandini,et al.  Developmental robotics: a survey , 2003, Connect. Sci..

[112]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[113]  Auke Jan Ijspeert,et al.  A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander , 2001, Biological Cybernetics.

[114]  A. Riegler,et al.  Understanding representation in the cognitive sciences : does representation need reality? , 1999 .

[115]  William J. Clancey,et al.  The frame of reference problem in cognitive modeling , 1989 .