As Doping in (Hg,Cd)Te: An Alternative Point of View

Acceptor doping of many II–VI compound semiconductors has proved problematic and doping of epitaxial mercury cadmium telluride (MCT, Hg1−xCdxTe) with arsenic is no exception. High-temperature (>400°C) anneals followed by a lower temperature mercury-rich vacancy-filling anneal are frequently required to activate the dopant. The model frequently used to explain p-type doping with arsenic invokes an amphoteric nature of group V atoms in the II–VI lattice. This requires that group VI substitution with arsenic only occurs under mercury-rich conditions either during growth or the subsequent annealing and involves site switching of the As. However, there are inconsistencies in the amphoteric model and unexplained experimental observations, including arsenic which is 100% active as grown by metalorganic vapor-phase epitaxy (MOVPE). A new model, based on hydrogen passivation of the arsenic, is therefore proposed.

[1]  D. Edwall,et al.  p-type arsenic doping of Hg1−xCdxTe by molecular beam epitaxy , 1997 .

[2]  Neil T. Gordon,et al.  Investigation of parameters to obtain reduced Shockley–Read traps and near radiatively limited lifetimes in MOVPE-grown MCT , 2000 .

[3]  J. B. Mullin,et al.  A new MOVPE technique for the growth of highly uniform CMT , 1984 .

[4]  C. Summers,et al.  Chemical beam epitaxy of Hg1 − xCdxTe and related binaries , 1994 .

[5]  W. Palosz Residual gas in closed systems—I: development of gas in fused silica ampoules , 2004 .

[6]  P. Wisk,et al.  The role of the arsenic source in selective epitaxial growth of GaAs and AlGaAs by MOMBE , 1993 .

[7]  J. Roberts,et al.  Influence of stoichiometry on the electrical activity of impurities in Hg(1−x)Cd(x)Te , 1988 .

[8]  U. Kaiser,et al.  Arsenic ion implantation in Hg1-xCdxTe , 1988 .

[9]  J. B. Mullin,et al.  The growth by MOVPE and characterisation of CdxHg1−xTe , 1981 .

[10]  M. Young,et al.  Room‐temperature stability of the electrical properties of metalorganic vapor phase epitaxial Hg1−xCdxTe on GaAs , 1991 .

[11]  M. Willander,et al.  Hydrogen passivation of nitrogen acceptors confined in CdZnTe quantum well structures , 2001 .

[12]  D. F. Weirauch,et al.  Activation of arsenic as an acceptor in Hg1−xCdxTe under equilibrium conditions , 2002 .

[13]  A. Lusson,et al.  Behavior of hydrogen intentionally introduced by plasma into metalorganic vapor phase epitaxy grown CdTe:As layers , 2000 .

[14]  A. Hrubý,et al.  Preparation of Cd3As2 and CdAs2 crystals by transport reaction in vapour phase , 1971 .

[15]  P. Capper,et al.  Arsenic diffusion effects in CdxHg1-xTe layers grown by metal-organic vapour phase epitaxy , 1989 .

[16]  C. Glidewell,et al.  Do gas phase adducts form during metalorganic vapour phase epitaxial growth of gallium arsenide , 1994 .

[17]  C. Swartz,et al.  Molecular beam epitaxy growth of high-quality arsenic-doped HgCdTe , 2004 .

[18]  T. Tung,et al.  Hg-rich liquid-phase epitaxy of Hg1−xCdxTe , 1994 .

[19]  E. Haller,et al.  Local vibrational mode spectroscopy of nitrogen‐hydrogen complex in ZnSe , 1993 .

[20]  K. Jensen,et al.  Surface reactions of dimethylaminoarsine during MOMBE of GaAs , 1992 .

[21]  J. Jensen,et al.  Status of II–VI molecular-beam epitaxy technology , 1996 .

[22]  Scott M. Johnson,et al.  MBE-grown HgCdTe heterojunction structures for IR FPAs , 1996, Photonics West.

[23]  Joyce,et al.  Dynamics of the H-CAs complex in GaAs. , 1993, Physical review. B, Condensed matter.

[24]  Jones,et al.  Ab initio calculations of anharmonicity of the C-H stretch mode in HCN and GaAs. , 1994, Physical review. B, Condensed matter.

[25]  M. H. Kalisher The behavior of doped Hg1−xCdxTe epitaxial layers grown from Hg-rich melts , 1984 .

[26]  H. Fujita,et al.  Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition , 1993 .

[27]  Neil T. Gordon,et al.  High-performance long-wavelength HgCdTe infrared detectors grownon silicon substrates , 2004 .

[28]  Majid Zandian,et al.  Mode of arsenic incorporation in HgCdTe grown by MBE , 1997 .

[29]  J. L. Page,et al.  Growth and characterisation of CdxHg1-xTe grown by LPE using a novel sliding boat , 1987 .

[30]  N. Giles,et al.  Hydrogenation of undoped and nitrogen-doped CdTe grown by molecular beam epitaxy , 1996 .

[31]  L. Long,et al.  The pyrolysis of cadmium dimethyl and dissociation energies of the cadmium-carbon bonds , 1957 .

[32]  Yi Zhao,et al.  The arsenic clusters Asn (n = 1–5) and their anions: Structures, thermochemistry, and electron affinities , 2004, J. Comput. Chem..

[33]  S. Ghandhi,et al.  Extrinsic p‐type doping of HgCdTe grown by organometallic epitaxy , 1988 .

[34]  Jean Giess,et al.  Influence of the Silicon Substrate on Defect Formation in MCT Grown on II-VI Buffered Si Using a Combined Molecular Beam Epitaxy/Metal Organic Vapor Phase Epitaxy Technique , 2007 .

[35]  Janet E. Hails,et al.  Identification of the volatile decomposition products produced in the deposition of (Hg,Cd)Te by MOVPE , 1994 .

[36]  J. Bajaj,et al.  As diffusion in Hg1-xCdxTe for junction formation , 1993 .

[37]  Tse Tung,et al.  Infinite-melt vertical liquid-phase epitaxy of HgCdTe from Hg solution: Status and prospects , 1988 .

[38]  J. Mullin,et al.  Assessment of Organotellurium Compounds for Use as Movpe Precursors , 1988 .

[39]  P. A. Fisher,et al.  Hydrogen passivation in nitrogen and chlorine‐doped ZnSe films grown by gas source molecular beam epitaxy , 1995 .

[40]  Johnson,et al.  Hydrogen passivation of shallow-acceptor impurities in p-type GaAs. , 1986, Physical review. B, Condensed matter.

[41]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of integrated two-color HgCdTe detectors operating in the mid-wave infrared band , 1997 .

[42]  Jacques Chevallier Hydrogen-Dopant Interactins in Crystalline Semiconductors , 1996 .

[43]  D. Shaw,et al.  Activation of arsenic in epitaxial Hg1-xCdxTe (MCT) , 2006, SPIE Optics + Photonics.

[44]  T. Myers,et al.  AN INFRARED ABSORPTION INVESTIGATION OF HYDROGEN, DEUTERIUM, AND NITROGEN IN ZNSE GROWN BY MOLECULAR BEAM EPITAXY , 1996 .

[45]  Owen K. Wu,et al.  Growth and properties of In- and As-doped HgCdTe by MBE , 1993 .

[46]  S. D. Pearson,et al.  P-type as-doping of Hg1−xCdxTe grown by MOMBE , 1998 .

[47]  P. Koppel,et al.  Annealing and electrical properties of organometallic vapor phase epitaxy–interdiffused multilayer process grown HgCdTe , 1988 .

[48]  A. Chen,et al.  MBE growth and characterization of in situ arsenic doped HgCdTe , 1998 .

[49]  D. Cole-Hamilton,et al.  Evidence for a surface-bound free radical mechanism during the decomposition of iPr2Te in the presence or absence of mercury and/or Me2Cd under MOVPE conditions obtained from deuterium-labelled precursors , 1994 .

[50]  Peter Capper,et al.  Properties of Narrow-Gap Cadmium-Based Compounds , 1995 .

[51]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[52]  D. Ballutaud,et al.  Incorporation and Interaction of Hydrogen with Acceptor Impurities in II-VI Semiconductor Compounds , 1993 .

[53]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[54]  D. Côte,et al.  Hydrogen-arsenic interactions in MOVPE-grown CdTe: effects of rapid thermal annealing , 1996 .

[55]  P. Wisk,et al.  Alternative group V sources for growth of GaAs and AlGaAs by MOMBE (CBE) , 1992 .

[56]  C. Glidewell,et al.  Role of gas‐phase adducts in the growth of gallium arsenide by metalorganic vapor‐phase epitaxy , 1993 .

[57]  J. Mullin,et al.  A study of transport and pyrolysis in the growth of CdxHg1−xTe by MOVPE , 1983 .

[58]  L. G. Hipwood,et al.  Current status of large-area MOVPE growth of HgCdTe device heterostructures for infrared focal plane arrays , 2006 .

[59]  M. Zimmer,et al.  Trisdimethylaminoarsine as As source for the LP-MOVPE of GaAs , 1991 .

[60]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of integrated multispectral HgCdTe photodiodes for the detection of mid-wave infrared radiation , 1998 .

[61]  Choong Ki Kim,et al.  Characteristics of gradually doped LWIR diodes by hydrogenation , 2000 .

[62]  C. Glidewell,et al.  Evidence for reductive elimination of H2 in the decomposition of primary arsines , 1995 .

[63]  S. Shin,et al.  Annealing effect on the P-type carrier concentration in low-temperature processed arsenic-doped HgCdTe , 1993 .

[64]  H. R. Vydyanath Mechanisms of incorporation of donor and acceptor dopants in (Hg,Cd)Te alloys , 1991 .

[65]  H. M. Manasevit,et al.  The Use of Metal‐Organics in the Preparation of Semiconductor Materials II . II – VI Compounds , 1971 .

[66]  R. C. Abbott,et al.  Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te , 1983 .

[67]  D. Cole-Hamilton MOVPE Mechanisms from studies of specially designed and labelled precursors , 1999 .

[68]  Kazuhiro Ohkawa,et al.  Characteristics of p-type ZnSe Layers Grown by Molecular Beam Epitaxy with Radical Doping , 1991 .

[69]  Pradip Mitra,et al.  Improved arsenic doping in metalorganic chemical vapor deposition of HgCdTe andin situ growth of high performance long wavelength infrared photodiodes , 1996 .

[70]  D. J. Ashen,et al.  Organometallic growth of II–VI compounds , 1981 .

[71]  D. Côte,et al.  Hydrogen-acceptor pairing in CdTe epitaxial layers grown by OMVPE , 1993 .

[72]  C. L. Jones,et al.  Growth of fully doped Hg1−xCdxTe heterostructures using a novel iodine doping source to achieve improved device performance at elevated temperatures , 1996 .

[73]  Christopher M. Rouleau,et al.  p-type ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth , 1990 .

[74]  Y. Marfaing,et al.  Properties of nitrogen acceptor in CdTe: Energy spectrum and interaction with hydrogen , 1985 .