Hybrid CramÉr–Rao Bounds for Crustal Displacement Field Estimators in SAR Interferometry

This letter focuses on the performance achievable by spaceborne synthetic aperture radar interferometry (InSAR) in the estimation of line-of-sight crustal deformations from acquisitions over a distributed scatterer. Our model is suited for exploiting the hybrid Cramer-Rao bound (HCRB), where the unknowns are both deterministic parameters and stochastic variables. We take into account both target decorrelation and atmospheric phase screen (APS). This approach leads to a viable evaluation of InSAR performance as a function of system configuration, target decorrelation, and APS variance.

[1]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[2]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[3]  Peter M. Schultheiss,et al.  Array shape calibration using sources in unknown locations-Part I: Far-field sources , 1987, IEEE Trans. Acoust. Speech Signal Process..

[4]  Ramon F. Hanssen,et al.  Physical analysis of atmospheric delay signal observed in stacked radar interferometric data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[5]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[7]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[8]  R. Goldstein,et al.  Crossed orbit interferometry: theory and experimental results from SIR-B , 1988 .

[9]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[10]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.