Universal Tutte characters via combinatorial coalgebras

The Tutte polynomial is the most general invariant of matroids and graphs that can be computed recursively by deleting and contracting edges. We generalize this invariant to any class of combinatorial objects with deletion and contraction operations, associating to each such class a universal Tutte character by a functorial procedure. We show that these invariants satisfy a universal property and convolution formulae similar to the Tutte polynomial. With this machinery we recover classical invariants for delta-matroids, matroid perspectives, relative and colored matroids, generalized permutohedra, and arithmetic matroids, and produce some new convolution formulae. Our principal tools are combinatorial coalgebras and their convolution algebras. Our results generalize in an intrinsic way the recent results of Krajewski--Moffatt--Tanasa.

[1]  James G. Oxley,et al.  A Characterization of Tutte Invariants of 2-Polymatroids , 1993, J. Comb. Theory, Ser. B.

[2]  Lorenzo Traldi,et al.  A dichromatic polynomial for weighted graphs and link polynomials , 1989 .

[3]  Shariefuddin Pirzada,et al.  On the activities of p-basis of matroid perspectives , 2016, Discret. Math..

[4]  Dominic Welsh,et al.  Corrigendum to "A linking polynomial of two matroids" [Adv. in Appl. Math. 32 (1-2) (2004) 391-419] , 2012, Adv. Appl. Math..

[5]  Béla Bollobás,et al.  A polynomial of graphs on surfaces , 2002 .

[6]  Alex Fink,et al.  Matroids Over a Ring , 2012 .

[7]  Marcelo Aguiar,et al.  Monoidal Functors, Species, and Hopf Algebras , 2010 .

[8]  Spencer Backman,et al.  A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures , 2016, 1602.02664.

[9]  Tom Brylawski,et al.  A decomposition for combinatorial geometries , 1972 .

[10]  Vyacheslav Krushkal,et al.  Graphs, Links, and Duality on Surfaces , 2009, Combinatorics, Probability and Computing.

[11]  Suijie Wang Möbius conjugation and convolution formulae , 2015, J. Comb. Theory, Ser. B.

[12]  Luca Moci,et al.  Arithmetic matroids, the Tutte polynomial and toric arrangements , 2011 .

[13]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[14]  Luca Moci A Tutte polynomial for toric arrangements , 2009 .

[15]  W. T. Tutte,et al.  On dichromatic polynomials , 1967 .

[16]  William Schmitt,et al.  Hopf Algebras of Combinatorial Structures , 1993, Canadian Journal of Mathematics.

[17]  Iain Moffatt,et al.  Hopf algebras and Tutte polynomials , 2018, Adv. Appl. Math..

[18]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[19]  Seth Chaiken,et al.  The Tutte polynomial of a ported matroid , 1989, J. Comb. Theory, Ser. B.

[20]  Nguyen Hoang Nghia,et al.  Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach , 2013, Adv. Appl. Math..

[21]  André Bouchet,et al.  Greedy algorithm and symmetric matroids , 1987, Math. Program..

[22]  Yuanan Diao,et al.  Relative Tutte Polynomials for Coloured Graphs and Virtual Knot Theory , 2009, Combinatorics, Probability and Computing.

[23]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[24]  Koko Kalambay Kayibi A decomposition theorem for the linking polynomial of two matroids , 2008, Discret. Math..

[25]  D. Higgs,et al.  Strong maps of geometries , 1968 .

[26]  Andre Bouchet MAPS AND A-MATROIDS" , 1989 .

[27]  Thomas Zaslavsky,et al.  Strong Tutte functions of matroids and graphs , 1992 .

[28]  Ben Smith,et al.  Matroidal frameworks for topological Tutte polynomials , 2018, J. Comb. Theory, Ser. B.

[29]  Dominic Welsh,et al.  A linking polynomial of two matroids , 2004, Adv. Appl. Math..

[30]  Marcelo Aguiar,et al.  Hopf Monoids and Generalized Permutahedra , 2017, Memoirs of the American Mathematical Society.

[31]  Victor Reiner,et al.  A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.

[32]  Clark Butler A quasi-tree expansion of the Krushkal polynomial , 2018, Adv. Appl. Math..

[33]  Béla Bollobás,et al.  A Tutte Polynomial for Coloured Graphs , 1999, Combinatorics, Probability and Computing.

[34]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[35]  Ye Liu,et al.  G-Tutte Polynomials and Abelian Lie Group Arrangements , 2017, International Mathematics Research Notices.

[36]  Luca Moci,et al.  The multivariate arithmetic Tutte polynomial , 2012 .

[37]  Convolution-multiplication identities for Tutte polynomials of graphs and matroids , 2010, J. Comb. Theory, Ser. B.

[39]  Emanuele Delucchi,et al.  Products of arithmetic matroids and quasipolynomial invariants of CW-complexes , 2018, J. Comb. Theory, Ser. A.

[40]  William Schmitt,et al.  Incidence Hopf algebras , 1994 .

[41]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[42]  André Bouchet,et al.  Maps and Delta-matroids , 1989, Discret. Math..

[43]  Michel Las Vergnas,et al.  External and internal elements of a matroid basis , 1998, Discret. Math..

[44]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[45]  Michel Las Vergnas,et al.  The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives , 1999 .

[46]  T. Krajewski,et al.  Combinatorial Hopf algebras and topological Tutte polynomials , 2015 .

[47]  Victor Reiner,et al.  An Interpretation for the Tutte Polynomial , 1999, Eur. J. Comb..