Scaling of mean temperature dissipation rate

Expressions for Ce and Ceθ, the dimensionless mean energy and temperature dissipation rates, can be reasonably reconciled with measured and numerical data at small to moderate Rλ only if the Kolmogorov constant and more especially the Obukhov–Corrsin constant are assumed to depend on the flow and the Reynolds number.

[1]  R. Antonia,et al.  Three-component vorticity measurements in a turbulent grid flow , 1998, Journal of Fluid Mechanics.

[2]  Smith,et al.  Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. , 1994, Physical review letters.

[3]  B. Pearson,et al.  Reynolds number dependence of second-order velocity structure functions , 2000 .

[4]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[5]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[6]  S. Corrsin On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[7]  K. Sreenivasan On the scaling of the turbulent energy dissipation rate , 1984 .

[8]  G. Batchelor,et al.  Pressure fluctuations in isotropic turbulence , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Katepalli R. Sreenivasan,et al.  Developments in Fluid Dynamics and Aerospace Engineering , 1995 .

[10]  R. Antonia,et al.  Approximations for turbulent energy and temperature variance dissipation rates in grid turbulence , 2000 .

[11]  Laurent Mydlarski,et al.  Passive scalar statistics in high-Péclet-number grid turbulence , 1998, Journal of Fluid Mechanics.

[12]  Tongming Zhou,et al.  A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence , 1999 .

[13]  Stavros Tavoularis,et al.  Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1 , 1981, Journal of Fluid Mechanics.

[14]  Tongming Zhou,et al.  Second-order temperature and velocity structure functions: Reynolds number dependence , 2000 .

[15]  Lohse Crossover from high to low Reynolds number turbulence. , 1994, Physical review letters.

[16]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  Grossmann Asymptotic dissipation rate in turbulence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Sreenivasan,et al.  Scaling functions and scaling exponents in turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Katepalli R. Sreenivasan,et al.  An update on the energy dissipation rate in isotropic turbulence , 1998 .

[20]  G. Stolovitzky,et al.  Refined similarity hypotheses for passive scalars mixed by turbulence , 1995, Journal of Fluid Mechanics.

[21]  Shiyi Chen,et al.  Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field , 1996, Journal of Fluid Mechanics.

[22]  R. Antonia,et al.  Refined similarity hypotheses for turbulent velocity and temperature fields , 1995 .