Prediction on technetium triboride from first-principles calculations

Abstract Taking the Tc-B binary system as an example, here we report the first-principles prediction on new phases of technetium borides, TcB 3 , which has an unprecedented stoichiometry. Crystal structures, phase stability, electronic properties and mechanical properties of TcB 3 have been investigated using first-principles calculations. The hexagonal P 6 ¯ m 2 structure (No.187) TcB 3 with a high value of hardness (29 GPa) is energetically stable against decomposition into other compounds under pressures above 4 GPa, indicating that TcB 3 can be synthesized above this pressure.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  Li-Min Wang,et al.  Structural and relative stabilities, electronic properties and possible reactive routing of osmium and ruthenium borides from first-principles calculations. , 2013, Dalton transactions.

[3]  Zhijian Wu,et al.  Phase stability and mechanical properties of rhenium borides by first‐principles calculations , 2010, J. Comput. Chem..

[4]  Y. Zhong,et al.  Mechanical properties and chemical bonding of the Os–B system: A first-principles study , 2012 .

[5]  Gui Yang,et al.  Phase stability and physical properties of technetium borides: A first-principles study , 2014 .

[6]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[7]  S. Tolbert,et al.  Exploring the high-pressure behavior of superhard tungsten tetraboride , 2012 .

[8]  G. Will,et al.  Electron Deformation Density in Rhombohedral α‐Boron , 2001 .

[9]  Rong Yu,et al.  Calculations of single-crystal elastic constants made simple , 2010, Comput. Phys. Commun..

[10]  B. Wang,et al.  The ground-state structure and physical properties of ReB3 and IrB3 predicted from first principles , 2015 .

[11]  Hui Wang,et al.  Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles , 2010 .

[12]  Haiyan Yan,et al.  New crystal structure and physical properties of TcB from first-principles calculations , 2015 .

[13]  H. Gong,et al.  Structural, thermodynamic, and mechanical properties of bulk La and A-La2O3 , 2015 .

[14]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[15]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[16]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Julietta V. Rau,et al.  New Hard and Superhard Materials: RhB1.1 and IrB1.35 , 2009 .

[18]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[19]  R. F. Zhang,et al.  Stability and strength of transition-metal tetraborides and triborides. , 2012, Physical review letters.

[20]  Richard B Kaner,et al.  Osmium diboride, an ultra-incompressible, hard material. , 2005, Journal of the American Chemical Society.

[21]  Börje Johansson,et al.  Stainless steel optimization from quantum mechanical calculations , 2003, Nature materials.

[22]  B. Wang,et al.  Phase Stability and Physical Properties of Manganese Borides: A First-Principles Study , 2011 .

[23]  J. Neugebauer,et al.  Macroscopic elastic properties of textured ZrN–AlN polycrystalline aggregates , 2013, 1310.4344.

[24]  Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment , 2014, 1408.3201.

[25]  H. Böhm,et al.  Thermal expansion of rock-salt cubic AlN , 2015 .

[26]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[27]  X. Kuang,et al.  Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness , 2013 .

[28]  J. Rudziǹski,et al.  THE COMPOSITION AND STRUCTURE OF TECHNETIUM NITRIDE AND TECHNETIUM BORIDES , 1964 .

[29]  Qiang Zhu,et al.  Variable-composition structural optimization and experimental verification of MnB3 and MnB4. , 2014, Physical chemistry chemical physics : PCCP.

[30]  Roald Hoffmann,et al.  Solids and surfaces , 1988 .

[31]  S. Aydin,et al.  First-principles calculations of MnB 2 , TcB 2 , and ReB 2 within the ReB 2 -type structure , 2009 .

[32]  H. Gong,et al.  Thermodynamic and mechanical properties of TiC from ab initio calculation , 2014 .

[33]  R. Kaner,et al.  Preparation and properties of metallic, superhard rhenium diboride crystals. , 2008, Journal of the American Chemical Society.

[34]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[35]  Xiaofeng Li,et al.  Pressure and temperature induced phase transition in WB4: A first principles study , 2016 .

[36]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[37]  E. Deligoz,et al.  Lattice dynamical properties of TcB2 compound , 2012 .

[38]  W. Jeitschko,et al.  Preparation and structure of technetium triphosphide and rhenium triphosphide, isotypic polyphosphides with metal chains , 1982 .

[39]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[40]  X. Kuang,et al.  Phase Stability, Physical Properties, and Hardness of Transition-Metal Diborides MB2 (M = Tc, W, Re, and Os): First-Principles Investigations , 2013 .

[41]  Z. Kou,et al.  Is Rhenium Diboride a Superhard Material? , 2008 .

[42]  H. Gong,et al.  First principles study of thermodynamic and mechanical properties of Pd50Cu50 , 2015 .

[43]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[44]  Graeme Ackland,et al.  Structure and elasticity of MgO at high pressure , 1997 .

[45]  Q. Hou,et al.  Phase stability and mechanical properties of ruthenium borides from first principles calculations , 2014 .

[46]  Yanming Ma,et al.  Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4 , 2008 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  X. Kuang,et al.  Phase stability, mechanical properties, hardness, and possible reactive routing of chromium triboride from first-principle investigations. , 2013, The Journal of chemical physics.

[49]  H. Ye,et al.  Effect of W on structural stability of TiAl intermetallics and the site preference of W , 2002 .

[50]  Haigui Yang,et al.  Electronic structures, phase stability and hardness of technetium boride: First-principles calculation , 2010 .

[51]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[52]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[53]  F. Peng,et al.  Radial X-ray diffraction of tungsten tetraboride to 86 GPa under nonhydrostatic compression , 2013 .

[54]  Xiao-lin Zhou,et al.  Structural stability and elastic properties of WB4 under high pressure , 2015 .

[55]  Dianzhong Li,et al.  Hardness of T-carbon: Density functional theory calculations , 2011, 1108.2570.

[56]  Hui Wang,et al.  Universal ground state hexagonal phases and mechanical properties of stoichiometric transition metal tetraborides: TMB4 (TM = W, Tc, and Re) , 2013 .

[57]  K. Ho,et al.  New stable Re–B phases for ultra-hard materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  Ju Li,et al.  Toughness scale from first principles , 2009 .

[59]  Bin Xu,et al.  First-principles calculations of MnB4, TcB4, and ReB4 with the MnB4-type structure , 2012 .

[60]  J. Rau,et al.  Superhard properties of rhodium and iridium boride films. , 2010, ACS applied materials & interfaces.

[61]  G. Hilmas,et al.  Synthesis, densification, and mechanical properties of TaB2 , 2008 .

[62]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.