Hardware-assisted view-dependent map simplification

In this paper, we present an algorithm and a system to perform dynamic view dependent simplification of large geographical maps through a novel use of graphics hardware. Given a map as a collection of non-intersecting chains and a tolerance parameter for each chain, we produce a simplified map that resembles the original map, satisfying the condition that the distance between each point on the simplified chain and the original chain is within the given tolerance parameter, and that no two chains intersect. We also present an interactive map visualization system which uses frame-to-frame coherence to perform dynamic view-dependent simplification. Our initial results indicate that we get a 3-4 fold increase in the frame rates using our simplification algorithm on maps with 1.5-2 million vertices on an SGI Onyx workstation.

[1]  Henry Fuchs,et al.  Near real-time CSG rendering using tree normalization and geometric pruning , 1989, IEEE Computer Graphics and Applications.

[2]  Gavin S. P. Miller,et al.  Hierarchical Z-buffer visibility , 1993, SIGGRAPH.

[3]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[4]  Mohr,et al.  Interfacing 1990 US Census TIGER map files with New S graphics software. [Topologically Integrated Geographic Encoding and Referencing (TIGER)] , 1992 .

[5]  J. Hershberger,et al.  Speeding Up the Douglas-Peucker Line-Simplification Algorithm , 1992 .

[6]  W. S. Chan,et al.  Approximation of Polygonal Curves with Minimum Number of Line Segments or Minimum error , 1996, Int. J. Comput. Geom. Appl..

[7]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[8]  Uri Zwick,et al.  Coloring k-colorable graphs using smaller palettes , 2001, SODA '01.

[9]  Daniel A. Keim,et al.  Visualizing large-scale telecommunication networks and services (case study) , 1999, VIS '99.

[10]  Aristides A. G. Requicha,et al.  Depth-Buffering Display Techniques for Constructive Solid Geometry , 1986, IEEE Computer Graphics and Applications.

[11]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[12]  Robert G. Cromley,et al.  Hierarchical Methods of Line Simplification , 1991 .

[13]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[14]  Cláudio T. Silva,et al.  A Hardware-Assisted Visibility-Ordering Algorithm With Applications To Volume Rendering , 2001, VisSym.

[15]  J. S. Marino,et al.  IDENTIFICATION OF CHARACTERISTIC POINTS ALONG NATURALLY OCCURRING LINES / AN EMPIRICAL STUDY , 1979 .

[16]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..

[17]  Andrea Mantler Jack Snoeyink Safe Sets for Line Simpli cation , 2000 .

[18]  Marc Olano,et al.  Interactive multi-pass programmable shading , 2000, SIGGRAPH.

[19]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[20]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[21]  Daniel A. Keim,et al.  Visualizing large-scale telecommunication networks and services , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[22]  Greg Turk,et al.  Image-driven simplification , 2000, TOGS.

[23]  E. R. White Assessment of Line-Generalization Algorithms Using Characteristic Points , 1985 .

[24]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[25]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[26]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[27]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[28]  Stefan Schirra,et al.  A new approach to subdivision simplification , 1995 .

[29]  Regina Estkowski,et al.  No steiner point subdivision simplification is NP-complete , 1998, Canadian Conference on Computational Geometry.