Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.

[1]  R L Jernigan,et al.  Coordination geometry of nonbonded residues in globular proteins. , 1996, Folding & design.

[2]  Frank Alber,et al.  Structural Modeling of Protein Interactions by Analogy: Application to PSD-95 , 2006, PLoS Comput. Biol..

[3]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[4]  Benjamin A. Shoemaker,et al.  Finding biologically relevant protein domain interactions: Conserved binding mode analysis , 2006, Protein science : a publication of the Protein Society.

[5]  L. Lai,et al.  Dynamic property is a key determinant for protein–protein interactions , 2007, Proteins.

[6]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[7]  Petras J. Kundrotas,et al.  GWIDD: Genome-wide protein docking database , 2009, Nucleic Acids Res..

[8]  Thomas Lengauer,et al.  Alignment of Non-Covalent Interactions at Protein-Protein Interfaces , 2008, PloS one.

[9]  Ozlem Keskin,et al.  Insights into subunit interactions in the heterotetrameric structure of potato ADP-glucose pyrophosphorylase. , 2008, Biophysical journal.

[10]  Sandor Vajda,et al.  CAPRI: A Critical Assessment of PRedicted Interactions , 2003, Proteins.

[11]  Ruth Nussinov,et al.  A method for simultaneous alignment of multiple protein structures , 2004, Proteins.

[12]  R. Henderson Realizing the potential of electron cryo-microscopy , 2004, Quarterly Reviews of Biophysics.

[13]  Shoshana J Wodak,et al.  Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications. , 2004, Current opinion in structural biology.

[14]  Jeffrey J. Gray,et al.  High-resolution protein-protein docking. , 2006, Current opinion in structural biology.

[15]  Narayanan Eswar,et al.  Host–pathogen protein interactions predicted by comparative modeling , 2007, Protein science : a publication of the Protein Society.

[16]  R. Russell,et al.  Structural systems biology: modelling protein interactions , 2006, Nature Reviews Molecular Cell Biology.

[17]  Ruth Nussinov,et al.  Protein-Protein Interfaces: Recognition of Similar Spatial and Chemical Organizations , 2004, WABI.

[18]  Ozlem Keskin,et al.  PRISM: protein interactions by structural matching , 2005, Nucleic Acids Res..

[19]  Vladimir Tumanyan,et al.  Comprehensive statistical analysis of residues interaction specificity at protein–protein interfaces , 2007, Proteins.

[20]  Jeffrey Skolnick,et al.  iAlign: a method for the structural comparison of protein-protein interfaces , 2010, Bioinform..

[21]  M. Schroeder,et al.  Using protein binding site prediction to improve protein docking. , 2008, Gene.

[22]  Julie Bernauer,et al.  DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein-protein interactions , 2008, Bioinform..

[23]  Harianto Tjong,et al.  PI2PE: protein interface/interior prediction engine , 2007, Nucleic Acids Res..

[24]  Petras J. Kundrotas,et al.  Docking by Structural Similarity at Protein-Protein Interfaces , 2010 .

[25]  Mona Singh,et al.  Toward the dynamic interactome: it's about time , 2010, Briefings Bioinform..

[26]  E. Zuiderweg,et al.  Mapping protein-protein interactions in solution by NMR spectroscopy. , 2002, Biochemistry.

[27]  Petras J. Kundrotas,et al.  Accuracy of Protein-Protein Binding Sites in High-Throughput Template-Based Modeling , 2010, PLoS Comput. Biol..

[28]  Bernhard Kuster,et al.  Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. , 2003, European journal of biochemistry.

[29]  Juan Fernández-Recio,et al.  Pushing Structural Information into the Yeast Interactome by High-Throughput Protein Docking Experiments , 2009, PLoS Comput. Biol..

[30]  Emil Alexov,et al.  omology-based modeling of 3 D structures of protein – protein complexes using lignments of modified sequence profiles etras , 2008 .

[31]  P. Bork,et al.  Structure-Based Assembly of Protein Complexes in Yeast , 2004, Science.

[32]  Ozlem Keskin,et al.  HotPoint: hot spot prediction server for protein interfaces , 2010, Nucleic Acids Res..

[33]  Ozlem Keskin,et al.  Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces , 2005, Bioinform..

[34]  Peter A. Kollman,et al.  Computational alanine scanning of the 1:1 human growth hormone–receptor complex , 2002, J. Comput. Chem..

[35]  J. Thornton,et al.  Protein–protein interfaces: Analysis of amino acid conservation in homodimers , 2001, Proteins.

[36]  Benjamin A. Shoemaker,et al.  Inferred Biomolecular Interaction Server—a web server to analyze and predict protein interacting partners and binding sites , 2009, Nucleic Acids Res..

[37]  Hui Lu,et al.  Development of unified statistical potentials describing protein-protein interactions. , 2003, Biophysical journal.

[38]  Bernhard Kuster,et al.  Affinity purification‐mass spectrometry , 2003 .

[39]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[40]  J. Thornton,et al.  Structural characterisation and functional significance of transient protein-protein interactions. , 2003, Journal of molecular biology.

[41]  Ozlem Keskin,et al.  Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy , 2009, Bioinform..

[42]  Harren Jhoti,et al.  High-throughput crystallography for lead discovery in drug design , 2002, Nature Reviews Drug Discovery.

[43]  R. Nussinov,et al.  Principles of protein-protein interactions: what are the preferred ways for proteins to interact? , 2008, Chemical reviews.

[44]  Huan‐Xiang Zhou,et al.  Selection of near‐native poses in CAPRI rounds 13‐19 , 2010, Proteins.

[45]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[46]  Hongbo Zhu,et al.  NOXclass: prediction of protein-protein interaction types , 2006, BMC Bioinformatics.

[47]  Tom M. W. Nye,et al.  Statistical analysis of domains in interacting protein pairs , 2005, Bioinform..

[48]  Janet M. Thornton,et al.  WSsas: a web service for the annotation of functional residues through structural homologues , 2009, Bioinform..

[49]  R. Norel,et al.  Electrostatic aspects of protein-protein interactions. , 2000, Current opinion in structural biology.

[50]  Ian M. Donaldson,et al.  BIND: the Biomolecular Interaction Network Database , 2001, Nucleic Acids Res..

[51]  Alexandre M J J Bonvin,et al.  Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. , 2010, Journal of proteome research.

[52]  S. Wodak,et al.  Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures , 2005, Proteins.

[53]  Marc F Lensink,et al.  Docking and scoring protein interactions: CAPRI 2009 , 2010, Proteins.

[54]  Ozlem Keskin,et al.  Restricted mobility of conserved residues in protein-protein interfaces in molecular simulations. , 2008, Biophysical journal.

[55]  Emil Alexov,et al.  Nucleic Acids Research Advance Access published October 28, 2006 PROTCOM: searchable database of protein complexes enhanced with domain–domain structures , 2006 .

[56]  Ruth Nussinov,et al.  An integrated suite of fast docking algorithms , 2010, Proteins.

[57]  C. Deane,et al.  Protein Interactions , 2002, Molecular & Cellular Proteomics.

[58]  Hui Lu,et al.  Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome. , 2003, Genome research.

[59]  Luhua Lai,et al.  Structure-based method for analyzing protein–protein interfaces , 2004, Journal of molecular modeling.

[60]  E. Levy A simple definition of structural regions in proteins and its use in analyzing interface evolution. , 2010, Journal of molecular biology.

[61]  S. Vajda,et al.  Anchor residues in protein-protein interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Qifang Xu,et al.  The protein common interface database (ProtCID)—a comprehensive database of interactions of homologous proteins in multiple crystal forms , 2010, Nucleic Acids Res..

[63]  H. Wolfson,et al.  Principles of flexible protein–protein docking , 2008, Proteins.

[64]  Ben M. Webb,et al.  Integrative Structure Modeling of Macromolecular Assemblies from Proteomics Data* , 2010, Molecular & Cellular Proteomics.

[65]  Joël Janin,et al.  Protein-protein docking tested in blind predictions: the CAPRI experiment. , 2010, Molecular bioSystems.

[66]  M J Sternberg,et al.  Use of pair potentials across protein interfaces in screening predicted docked complexes , 1999, Proteins.

[67]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[68]  Kurt S. Thorn,et al.  ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions , 2001, Bioinform..

[69]  Daniel R. Caffrey,et al.  Are protein–protein interfaces more conserved in sequence than the rest of the protein surface? , 2004, Protein science : a publication of the Protein Society.

[70]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[71]  M. Lawrence,et al.  Shape complementarity at protein/protein interfaces. , 1993, Journal of molecular biology.

[72]  J. Thornton,et al.  Discriminating between homodimeric and monomeric proteins in the crystalline state , 2000, Proteins.

[73]  R. Nussinov,et al.  Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues. , 2005, Journal of molecular biology.

[74]  Markus Müller,et al.  Automated protein identification by tandem mass spectrometry: issues and strategies. , 2006, Mass spectrometry reviews.

[75]  A. Volkov,et al.  Binding hot spot in the weak protein complex of physiological redox partners yeast cytochrome C and cytochrome C peroxidase. , 2009, Journal of molecular biology.

[76]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[77]  Ozlem Keskin,et al.  Towards inferring time dimensionality in protein–protein interaction networks by integrating structures: the p53 example† †This article is part of a Molecular BioSystems themed issue on Computational and Systems Biology. , 2009, Molecular bioSystems.

[78]  Zhiping Weng,et al.  Protein–protein docking benchmark version 4.0 , 2010, Proteins.

[79]  P. O'Connor,et al.  Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. , 1994, Science.

[80]  Michael J. E. Sternberg,et al.  3D-Garden: a system for modelling protein-protein complexes based on conformational refinement of ensembles generated with the marching cubes algorithm , 2008, Bioinform..

[81]  Z. Weng,et al.  Structure, function, and evolution of transient and obligate protein-protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[83]  Ilya A Vakser,et al.  Protein-protein interfaces are special. , 2004, Structure.

[84]  Patrick Aloy,et al.  Interrogating protein interaction networks through structural biology , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  H. Wolfson,et al.  A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications , 2004, Protein science : a publication of the Protein Society.

[86]  Z. Weng,et al.  Integrating statistical pair potentials into protein complex prediction , 2007, Proteins.

[87]  L. Castagnoli,et al.  Protein Interaction Networks by Proteome Peptide Scanning , 2004, PLoS biology.

[88]  Jeffrey Skolnick,et al.  M-TASSER: an algorithm for protein quaternary structure prediction. , 2008, Biophysical journal.

[89]  Ozlem Keskin,et al.  Architectures and functional coverage of protein-protein interfaces. , 2008, Journal of molecular biology.

[90]  Barry Honig,et al.  On the role of electrostatic interactions in the design of protein-protein interfaces. , 2002, Journal of molecular biology.

[91]  H. Wolfson,et al.  A dataset of protein-protein interfaces generated with a sequence-order-independent comparison technique. , 1996, Journal of molecular biology.

[92]  A. Bogan,et al.  Anatomy of hot spots in protein interfaces. , 1998, Journal of molecular biology.

[93]  Ruth Nussinov,et al.  FireDock: Fast interaction refinement in molecular docking , 2007, Proteins.

[94]  Tammy M. K. Cheng,et al.  pyDock: Electrostatics and desolvation for effective scoring of rigid‐body protein–protein docking , 2007, Proteins.

[95]  M. Gerstein,et al.  Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. , 2004, Genome research.

[96]  Maria Victoria Schneider,et al.  MINT: a Molecular INTeraction database. , 2002, FEBS letters.

[97]  Thomas Simonson,et al.  Homology modelling of protein-protein complexes: a simple method and its possibilities and limitations , 2008, BMC Bioinformatics.

[98]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[99]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[100]  Raquel Norel,et al.  Protein interface conservation across structure space , 2010, Proceedings of the National Academy of Sciences.

[101]  Andreas Hoppe,et al.  Docking without docking: ISEARCH—prediction of interactions using known interfaces , 2007, Proteins.

[102]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[103]  Christian Cole,et al.  Side‐chain conformational entropy at protein–protein interfaces , 2002, Protein science : a publication of the Protein Society.

[104]  Hui Lu,et al.  MULTIPROSPECTOR: An algorithm for the prediction of protein–protein interactions by multimeric threading , 2002, Proteins.

[105]  J. Janin,et al.  Dissecting protein–protein recognition sites , 2002, Proteins.

[106]  K. Sugasawa,et al.  Centrosome Protein Centrin 2/Caltractin 1 Is Part of the Xeroderma Pigmentosum Group C Complex That Initiates Global Genome Nucleotide Excision Repair* , 2001, The Journal of Biological Chemistry.

[107]  Solène Grosdidier,et al.  Identification of hot-spot residues in protein-protein interactions by computational docking , 2008, BMC Bioinformatics.

[108]  Burkhard Rost,et al.  Protein–Protein Interaction Hotspots Carved into Sequences , 2007, PLoS Comput. Biol..

[109]  R. Russell,et al.  The relationship between sequence and interaction divergence in proteins. , 2003, Journal of molecular biology.

[110]  Melvin I Simon,et al.  In different organisms, the mode of interaction between two signaling proteins is not necessarily conserved. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[112]  O. Ptitsyn,et al.  Empirical solvent‐mediated potentials hold for both intra‐molecular and inter‐molecular inter‐residue interactions , 1998, Protein science : a publication of the Protein Society.

[113]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[114]  Li Li,et al.  RDOCK: Refinement of rigid‐body protein docking predictions , 2003, Proteins.

[115]  James Vlasblom,et al.  Challenges and Rewards of Interaction Proteomics * , 2009, Molecular & Cellular Proteomics.

[116]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[117]  N. Kannan,et al.  Analysis of homodimeric protein interfaces by graph-spectral methods. , 2002, Protein engineering.

[118]  Ursula Pieper,et al.  Protein complex compositions predicted by structural similarity , 2006, Nucleic acids research.

[119]  H. Wolfson,et al.  FiberDock: Flexible induced‐fit backbone refinement in molecular docking , 2010, Proteins.

[120]  Z. Weng,et al.  Protein–protein docking benchmark version 3.0 , 2008, Proteins.

[121]  Julie C. Mitchell,et al.  An automated decision‐tree approach to predicting protein interaction hot spots , 2007, Proteins.

[122]  D. Bailey,et al.  The Binding Interface Database (BID): A Compilation of Amino Acid Hot Spots in Protein Interfaces , 2003, Bioinform..

[123]  Severin Se,et al.  Cooperative interaction of pyruvate with pyruvate dehydrogenase isolated from pigeon thoracic muscles , 1977 .

[124]  Rama Ranganathan,et al.  Knowledge-based potentials in protein design. , 2006, Current opinion in structural biology.

[125]  A. Sali,et al.  The molecular sociology of the cell , 2007, Nature.

[126]  Robert B. Russell,et al.  InterPreTS: protein Interaction Prediction through Tertiary Structure , 2003, Bioinform..

[127]  Ozlem Keskin,et al.  Human Cancer Protein-Protein Interaction Network: A Structural Perspective , 2009, PLoS Comput. Biol..