Boundary Vortices for Thin Ferromagnetic Films

Abstract.We consider a simplified version of the micromagnetic energy for ferromagnetic samples in the shape of thin films. We study (a) stationary, stable critical points, and (b) solutions of the corresponding Landau-Lifshitz equation under a stability condition. We determine the asymptotic behaviour of solutions of these variational problems in the thin film limit. A characteristic property of the limit is the development of Ginzburg-Landau-type vortices at the boundary.

[1]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[2]  F. Hélein Régularité des applications faiblement harmoniques entre une surface et une sphère , 1990 .

[3]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[4]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[5]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[6]  Itai Shafrir,et al.  ON NEMATICS STABILIZED BY A LARGE EXTERNAL FIELD , 1999 .

[7]  R. Moser Energy concentration for thin films in micromagnetics , 2003 .

[8]  Mikhail Feldman,et al.  Partial regularity for harmonic maps of evolution into spheres , 1994 .

[9]  R. Kohn,et al.  Another Thin-Film Limit of Micromagnetics , 2005 .

[10]  Richard Schoen,et al.  Analytic Aspects of the Harmonic Map Problem , 1984 .

[11]  Tadeusz Iwaniec,et al.  Quasiregular mappings in even dimensions , 1993 .

[12]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[13]  G. Carbou THIN LAYERS IN MICROMAGNETISM , 2001 .

[14]  E Weinan,et al.  Effective dynamics for ferromagnetic thin films , 2001 .

[15]  F. Lin A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices” , 1996 .

[16]  Richard D. James,et al.  Micromagnetics of very thin films , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[18]  R. Moser Ginzburg-Landau vortices for thin ferromagnetic films , 2003 .

[19]  Fanghua Lin,et al.  Static Theory for Planar Ferromagnets and Antiferromagnets , 2001 .

[20]  Michael Struwe,et al.  On the evolution of harmonic mappings of Riemannian surfaces , 1985 .

[21]  Michael Struwe,et al.  On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions , 1994, Differential and Integral Equations.