Quivers with potentials associated to triangulated surfaces

We attempt to relate two recent developments: cluster algebras associated to triangulations of surfaces by Fomin–Shapiro–Thurston, and quivers with potentials (QPs) and their mutations introduced by Derksen–Weyman–Zelevinsky. To each ideal triangulation of a bordered surface with marked points, we associate a QP, in such a way that whenever two ideal triangulations are related by a flip of an arc, the respective QPs are related by a mutation with respect to the flipped arc. We prove that if the surface has non‐empty boundary, then the QPs associated to its triangulations are rigid and hence non‐degenerate.

[1]  K. Baur,et al.  A Geometric Description of the m-cluster Categories of Type Dn , 2006, math/0610512.

[2]  D. Labardini-Fragoso Quivers with potentials associated to triangulated surfaces, Part II: Arc representations , 2009, 0909.4100.

[3]  L. Williams,et al.  Positivity for cluster algebras from surfaces , 2009, 0906.0748.

[4]  J. Weyman,et al.  Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.

[5]  Ibrahim Assem,et al.  Gentle algebras arising from surface triangulations , 2009, 0903.3347.

[6]  M. Shapiro,et al.  Skew-symmetric cluster algebras of finite mutation type , 2008, 0811.1703.

[7]  Gregg Musiker,et al.  Cluster expansion formulas and perfect matchings , 2008, 0810.3638.

[8]  Ralf Schiffler,et al.  On cluster algebras arising from unpunctured surfaces II , 2008, 0809.2593.

[9]  Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.

[10]  K. Baur Geometric construction of cluster algebras and cluster categories , 2008, 0804.4065.

[11]  Hugh Thomas,et al.  On Cluster Algebras Arising from Unpunctured Surfaces , 2007, 0712.4131.

[12]  A. Zelevinsky Mutations for quivers with potentials: Oberwolfach talk, April 2007 , 2007, 0706.0822.

[13]  J. Weyman,et al.  Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.

[14]  S. Fomin,et al.  Cluster algebras IV: Coefficients , 2006, Compositio Mathematica.

[15]  A. Goncharov,et al.  Dual Teichmuller and lamination spaces , 2005, math/0510312.

[16]  D. Thurston,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.

[17]  R. Schiffler A geometric model for cluster categories of type Dn , 2006, math/0608264.

[18]  R. Schiffler,et al.  Quivers with Relations and Cluster Tilted Algebras , 2004, math/0411238.

[19]  I. Reiten,et al.  Tilting theory and cluster combinatorics , 2004, math/0402054.

[20]  R. Schiffler,et al.  Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.

[21]  A. Vainshtein,et al.  Cluster algebras and Weil-Petersson forms , 2003, math/0309138.

[22]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[23]  Andrei Zelevinsky,et al.  Generalized associahedra via quiver representations , 2002, math/0205152.

[24]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[25]  A. Hatcher On triangulations of surfaces , 1991 .

[26]  Joel Hass,et al.  CLOSED GEODESICS ON SURFACES , 1982 .