Quivers with potentials associated to triangulated surfaces
暂无分享,去创建一个
[1] K. Baur,et al. A Geometric Description of the m-cluster Categories of Type Dn , 2006, math/0610512.
[2] D. Labardini-Fragoso. Quivers with potentials associated to triangulated surfaces, Part II: Arc representations , 2009, 0909.4100.
[3] L. Williams,et al. Positivity for cluster algebras from surfaces , 2009, 0906.0748.
[4] J. Weyman,et al. Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.
[5] Ibrahim Assem,et al. Gentle algebras arising from surface triangulations , 2009, 0903.3347.
[6] M. Shapiro,et al. Skew-symmetric cluster algebras of finite mutation type , 2008, 0811.1703.
[7] Gregg Musiker,et al. Cluster expansion formulas and perfect matchings , 2008, 0810.3638.
[8] Ralf Schiffler,et al. On cluster algebras arising from unpunctured surfaces II , 2008, 0809.2593.
[9] Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.
[10] K. Baur. Geometric construction of cluster algebras and cluster categories , 2008, 0804.4065.
[11] Hugh Thomas,et al. On Cluster Algebras Arising from Unpunctured Surfaces , 2007, 0712.4131.
[12] A. Zelevinsky. Mutations for quivers with potentials: Oberwolfach talk, April 2007 , 2007, 0706.0822.
[13] J. Weyman,et al. Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.
[14] S. Fomin,et al. Cluster algebras IV: Coefficients , 2006, Compositio Mathematica.
[15] A. Goncharov,et al. Dual Teichmuller and lamination spaces , 2005, math/0510312.
[16] D. Thurston,et al. Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.
[17] R. Schiffler. A geometric model for cluster categories of type Dn , 2006, math/0608264.
[18] R. Schiffler,et al. Quivers with Relations and Cluster Tilted Algebras , 2004, math/0411238.
[19] I. Reiten,et al. Tilting theory and cluster combinatorics , 2004, math/0402054.
[20] R. Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.
[21] A. Vainshtein,et al. Cluster algebras and Weil-Petersson forms , 2003, math/0309138.
[22] S. Fomin,et al. Cluster algebras II: Finite type classification , 2002, math/0208229.
[23] Andrei Zelevinsky,et al. Generalized associahedra via quiver representations , 2002, math/0205152.
[24] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[25] A. Hatcher. On triangulations of surfaces , 1991 .
[26] Joel Hass,et al. CLOSED GEODESICS ON SURFACES , 1982 .