A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing

Cell type–specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.

[1]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[2]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[3]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[4]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[5]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[6]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[7]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[8]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[10]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[12]  W. C. Hall,et al.  High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice , 2007, Proceedings of the National Academy of Sciences.

[13]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[14]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[15]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[16]  Marina Gertsenstein,et al.  Developmental and adult phenotyping directly from mutant embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[17]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[18]  C. S. Raymond,et al.  High-Efficiency FLP and ΦC31 Site-Specific Recombination in Mammalian Cells , 2007, PloS one.

[19]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[20]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[21]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[22]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[23]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[24]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[25]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[26]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[27]  Z. J. Huang,et al.  High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression , 2008, PloS one.

[28]  K. Svoboda,et al.  Myosin-dependent targeting of transmembrane proteins to neuronal dendrites , 2009, Nature Neuroscience.

[29]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[30]  E. Moser,et al.  Faculty Opinions recommendation of Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. , 2009 .

[31]  T. Kaneko,et al.  Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice , 2009, Neuroscience Research.

[32]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[33]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[34]  Attila Losonczy,et al.  Multi‐array silicon probes with integrated optical fibers: light‐assisted perturbation and recording of local neural circuits in the behaving animal , 2010, The European journal of neuroscience.

[35]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[36]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[37]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[38]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[39]  Edward G Jones,et al.  Low‐threshold calcium channel subunit Cav3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex , 2011, The Journal of comparative neurology.

[40]  Michael M. Halassa,et al.  Selective optical drive of thalamic reticular nucleus generates thalamic bursts & cortical spindles , 2011, Nature Neuroscience.

[41]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[42]  Tianyi Mao,et al.  A Role for Myosin VI in the Localization of Axonal Proteins , 2011, PLoS biology.

[43]  Andreas Möglich,et al.  Channelrhodopsin engineering and exploration of new optogenetic tools , 2011, Nature Methods.

[44]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[45]  Edward S Boyden,et al.  Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice , 2011, The Journal of Neuroscience.

[46]  Karel Svoboda,et al.  From cudgel to scalpel: toward precise neural control with optogenetics , 2011, Nature Methods.

[47]  Minmin Luo,et al.  Habenula “Cholinergic” Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes , 2011, Neuron.

[48]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[49]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[50]  Kenji F. Tanaka,et al.  Functional Connectome of the Striatal Medium Spiny Neuron , 2011, The Journal of Neuroscience.