Parameter estimation from interval-valued data using the expectation-maximization algorithm

This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.

[1]  M. Sarfraz,et al.  KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS , 2003 .

[2]  Shun-Feng Su,et al.  Support vector interval regression networks for interval regression analysis , 2003, Fuzzy Sets Syst..

[3]  Zhi-gang Su,et al.  Interval-valued EM Algorithm with Application to Estimating Parameters , 2022 .

[4]  Ana Colubi,et al.  Testing linear independence in linear models with interval-valued data , 2007, Comput. Stat. Data Anal..

[5]  Thierry Denoeux,et al.  Clustering interval-valued proximity data using belief functions , 2004, Pattern Recognit. Lett..

[6]  Zhi-gang Su,et al.  Kernel based nonlinear fuzzy regression model , 2013, Eng. Appl. Artif. Intell..

[7]  Gérard Govaert,et al.  Mixture Model Clustering of Uncertain Data , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[8]  Pei-Yi Hao,et al.  Interval regression analysis using support vector networks , 2009, Fuzzy Sets Syst..

[9]  H. Tanka Fuzzy data analysis by possibilistic linear models , 1987 .

[10]  Thierry Denoeux,et al.  Clustering Fuzzy Data Using the Fuzzy EM Algorithm , 2010, SUM.

[11]  Thierry Denoeux,et al.  Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework , 2013, IEEE Transactions on Knowledge and Data Engineering.

[12]  Mika Sato-Ilic,et al.  Symbolic Clustering with Interval-Valued Data , 2011, Complex Adaptive Systems.

[13]  Thierry Denœux Maximum likelihood estimation from fuzzy data using the EM algorithm , 2011 .

[14]  Mohamed A. El-Gebeily,et al.  An interval kalman filter, interval em algorithm with application to weather prediction , 2011 .

[15]  Monique Noirhomme-Fraiture,et al.  Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..

[16]  Junjie Wu,et al.  CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data , 2012, Neurocomputing.

[17]  Yi-Chung Hu Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysis , 2009, Neurocomputing.

[18]  Francisco de A. T. de Carvalho,et al.  Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances , 2010, Fuzzy Sets Syst..

[19]  G. Cordeiro,et al.  Bivariate symbolic regression models for interval-valued variables , 2011 .

[20]  Milan Hladík,et al.  Interval regression by tolerance analysis approach , 2012, Fuzzy Sets Syst..

[21]  Thierry Denoeux Maximum Likelihood from Evidential Data: An Extension of the EM Algorithm , 2010, SMPS.

[22]  Dug Hun Hong,et al.  Support vector interval regression machine for crisp input and output data , 2006, Fuzzy Sets Syst..

[23]  F. Palumbo,et al.  A PCA for interval-valued data based on midpoints and radii , 2003 .

[24]  Thierry Denoeux,et al.  Multidimensional scaling of interval-valued dissimilarity data , 2000, Pattern Recognit. Lett..

[25]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .