Hybrid Metaheuristics for Medical Data Classification

Medical data exhibit certain features that make their classification stand out as a distinct field of research. Several medical classification tasks exist, among which medical diagnosis and prognosis are most common. Deriving a medical classification is a complex task. In particular, the rule–discovery problem is NP-hard. Identifying the most suitable strategy for a particular medical classification problem along with its optimal parameters is no less difficult. Heuristics and meta-heuristics are normally applied to approximate its solution. This chapter reviews hybrid meta-heuristics for medical data classification task, particularly diagnosis and prognosis, and their application to model selection, including parameter optimization and feature subset selection.

[1]  Nada Lavrac,et al.  Selected techniques for data mining in medicine , 1999, Artif. Intell. Medicine.

[2]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[3]  Tong Heng Lee,et al.  Evolutionary computing for knowledge discovery in medical diagnosis , 2003, Artif. Intell. Medicine.

[4]  Evangelos Triantaphyllou,et al.  The Impact of Overfitting and Overgeneralization on the Classification Accuracy in Data Mining , 2008, Soft Computing for Knowledge Discovery and Data Mining.

[5]  J Mazumdar,et al.  Application of fuzzy-classifier system to coronary artery disease and breast cancer. , 1998, Australasian physical & engineering sciences in medicine.

[6]  Luca Lanzi Pier,et al.  Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions , 1999 .

[7]  Moncef Gabbouj,et al.  Evaluation of Global and Local Training Techniques over Feed-forward Neural Network Architecture Spaces for Computer-aided Medical Diagnosis , 2022 .

[8]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[9]  Larry Bull,et al.  ZCS Redux , 2002, Evolutionary Computation.

[10]  Moshe Sipper,et al.  Evolutionary computation in medicine: an overview , 2000, Artif. Intell. Medicine.

[11]  Lawrence M. Fagan,et al.  Medical informatics: computer applications in health care and biomedicine (Health informatics) , 2003 .

[12]  Jouni Lampinen,et al.  Differential Evolution Classifier in Noisy Settings and with Interacting Variables , 2011, Appl. Soft Comput..

[13]  Muhammad Zubair Shafiq,et al.  Guidelines to Select Machine Learning Scheme for Classification of Biomedical Datasets , 2009, EvoBIO.

[14]  Yang Gao,et al.  Learning classifier system ensemble for data mining , 2005, GECCO '05.

[15]  Debnath Bhattacharyya,et al.  Cell-graph coloring for cancerous tissue modelling and classification , 2011, Multimedia Tools and Applications.

[16]  John H. Holmes,et al.  Rule Discovery in Epidemiologic Surveillance Data Using EpiXCS: An Evolutionary Computation Approach , 2005, AIME.

[17]  Stewart W. Wilson Mining Oblique Data with XCS , 2000, IWLCS.

[18]  Pier Luca Lanzi,et al.  Mining interesting knowledge from data with the XCS classifier system , 2001 .

[19]  Said Salhi,et al.  Predicting Colorectal Cancer Recurrence: A Hybrid Neural Networks-Based Approach , 2005 .

[20]  Muddassar Farooq,et al.  Performance evaluation of evolutionary algorithms in classification of biomedical datasets , 2009, GECCO '09.

[21]  Shib Sankar Sana,et al.  A hybrid approach to design efficient learning classifiers , 2009, Comput. Math. Appl..

[22]  Muddassar Farooq,et al.  Classification Potential vs. Classification Accuracy: A Comprehensive Study of Evolutionary Algorithms with Biomedical Datasets , 2009, IWLCS.

[23]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[24]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[25]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[26]  Juan Julián Merelo Guervós,et al.  Multiobjective Optimization of Ensembles of Multilayer Perceptrons for Pattern Classification , 2006, PPSN.

[27]  Celia C. Bojarczuk,et al.  Genetic programming for knowledge discovery in chest-pain diagnosis. , 2000, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[28]  Alper Ekrem Murat,et al.  A discrete particle swarm optimization method for feature selection in binary classification problems , 2010, Eur. J. Oper. Res..

[29]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[30]  S B Kotsiantis,et al.  RETRACTED ARTICLE: Feature selection for machine learning classification problems: a recent overview , 2014, Artificial Intelligence Review.

[31]  Hugo Jair Escalante,et al.  Particle Swarm Model Selection , 2009, J. Mach. Learn. Res..

[32]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[33]  Dennis R. Durbin,et al.  Discovery of predictive models in an injury surveillance database: an application of data mining in clinical research , 2000, AMIA.

[34]  Hussein A. Abbass,et al.  Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms , 2003, Neural Computation.

[35]  Graham J. Williams,et al.  Data Mining , 2000, Communications in Computer and Information Science.

[36]  C. Metz,et al.  A receiver operating characteristic partial area index for highly sensitive diagnostic tests. , 1996, Radiology.

[37]  Michael Stonebraker,et al.  The Morgan Kaufmann Series in Data Management Systems , 1999 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[39]  Alex Alves Freitas,et al.  A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets , 2004, Artif. Intell. Medicine.

[40]  Muddassar Farooq,et al.  The Role of Biomedical Dataset in Classification , 2009, AIME.

[41]  Ester Bernadó-Mansilla,et al.  Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks , 2003, Evolutionary Computation.

[42]  Pei-Chann Chang,et al.  A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification , 2011, Appl. Soft Comput..

[43]  Marc Schoenauer,et al.  Artificial Evolution , 2000, Lecture Notes in Computer Science.

[44]  Stewart W. Wilson ZCS: A Zeroth Level Classifier System , 1994, Evolutionary Computation.

[45]  John H. Holmes Discovering Risk of Disease with a Learning Classifier System , 1997, ICGA.

[46]  F. de Toro,et al.  PSFGA: a parallel genetic algorithm for multiobjective optimization , 2002, Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing.

[47]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[48]  D.K. Liu,et al.  Classification of EEG Signals Using a Genetic-Based Machine Learning Classifier , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[49]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[50]  Stewart W. Wilson,et al.  Learning classifier systems: New models, successful applications , 2002, Inf. Process. Lett..

[51]  Olgierd Unold,et al.  Mining knowledge from data using Anticipatory Classifier System , 2008, Knowl. Based Syst..

[52]  Paulo J. G. Lisboa,et al.  The Use of Artificial Neural Networks in Decision Support in Cancer: a Systematic Review , 2005 .

[53]  Larry Bull,et al.  Mining breast cancer data with XCS , 2007, GECCO '07.

[54]  Vasile Palade,et al.  Optimized Precision - A New Measure for Classifier Performance Evaluation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[55]  Jaume Bacardit Peñarroya Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time , 2004 .

[56]  Shou-De Lin,et al.  Learning to improve area-under-FROC for imbalanced medical data classification using an ensemble method , 2008, SKDD.

[57]  Dennis R. Durbin,et al.  The learning classifier system: an evolutionary computation approach to knowledge discovery in epidemiologic surveillance , 2000, Artif. Intell. Medicine.

[58]  Evangelos Triantaphyllou,et al.  An application of a new meta-heuristic for optimizing the classification accuracy when analyzing some medical datasets , 2009, Expert Syst. Appl..

[59]  Peter J. F. Lucas,et al.  Analysis of Notions of Diagnosis , 1998, Artif. Intell..

[60]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[61]  Hussein A. Abbass,et al.  A Self-Organized, Distributed, and Adaptive Rule-Based Induction System , 2009, IEEE Transactions on Neural Networks.

[62]  Jason H. Moore,et al.  Learning classifier systems: a complete introduction, review, and roadmap , 2009 .

[63]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[64]  Antonio Candelieri,et al.  A hyper-solution framework for classification problems via metaheuristic approaches , 2011, 4OR.

[65]  C. K. Mohan,et al.  ClaDia: a fuzzy classifier system for disease diagnosis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[66]  Martin V. Butz,et al.  Learning Classifier Systems: Looking Back and Glimpsing Ahead , 2008, IWLCS.

[67]  Martin V. Butz,et al.  Data Mining in Learning Classifier Systems: Comparing XCS with GAssist , 2005, IWLCS.

[68]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[69]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[70]  Thomas A. Runkler,et al.  Multi-Criteria Ant Feature Selection Using Fuzzy Classifiers , 2009 .

[71]  Miguel Toro,et al.  Evolutionary learning of hierarchical decision rules , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[72]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[73]  Tim Kovacs,et al.  Advances in Learning Classifier Systems , 2001, Lecture Notes in Computer Science.

[74]  Cigdem Inan Aci,et al.  A hybrid classification method of k nearest neighbor, Bayesian methods and genetic algorithm , 2010, Expert Syst. Appl..

[75]  C. Hanson,et al.  Artificial intelligence applications in the intensive care unit , 2001, Critical care medicine.

[76]  Larry Bull,et al.  Learning Classifier Systems , 2002, Annual Conference on Genetic and Evolutionary Computation.

[77]  Dikai Liu,et al.  Distributed classifier migration in xcs for classification of electroencephalographic signals , 2007, 2007 IEEE Congress on Evolutionary Computation.

[78]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[79]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[80]  Ivan Chorbev,et al.  Web Based Medical Expert System with a Self Training Heuristic Rule Induction Algorithm , 2009, 2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications.

[81]  Larry Bull,et al.  Learning Classifier Systems in Data Mining: An Introduction , 2008, Learning Classifier Systems in Data Mining.

[82]  Toshihide Ibaraki,et al.  Metaheuristics : progress as real problem solvers , 2005 .

[83]  Foster J. Provost,et al.  A Survey of Methods for Scaling Up Inductive Algorithms , 1999, Data Mining and Knowledge Discovery.

[84]  A Abu-Hanna,et al.  Prognostic methods in medicine. , 1999, Artificial intelligence in medicine.

[85]  Bernabé Dorronsoro,et al.  Estimation of Distribution Algorithms , 2006 .

[86]  R. Dybowski,et al.  Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm , 1996, The Lancet.

[87]  David S. Wishart,et al.  Applications of Machine Learning in Cancer Prediction and Prognosis , 2006, Cancer informatics.

[88]  Pericles A. Mitkas,et al.  ZCS Revisited: Zeroth-Level Classifier Systems for Data Mining , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[89]  Moshe Sipper,et al.  A fuzzy-genetic approach to breast cancer diagnosis , 1999, Artif. Intell. Medicine.

[90]  Gilles Énée,et al.  Prediction using Pittsburgh learning classifier systems: APCS use case , 2010, GECCO '10.

[91]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[92]  Lior Rokach,et al.  Soft Computing for Knowledge Discovery and Data Mining , 2007 .

[93]  Shuo-Yan Chou,et al.  Enhancing the classification accuracy by scatter-search-based ensemble approach , 2011, Appl. Soft Comput..

[94]  Virginia Torczon,et al.  DERIVATIVE-FREE PATTERN SEARCH METHODS FOR MULTIDISCIPLINARY DESIGN PROBLEMS , 1994 .

[95]  Jinbo Bi,et al.  LungCAD: a clinically approved, machine learning system for lung cancer detection , 2007, KDD '07.

[96]  M. Narayanan,et al.  A Genetic Algorithm to Improve a Neural Network to Predict a Patient’s Response to Warfarin , 1993, Methods of Information in Medicine.

[97]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .