Relationship between local structure and phase transitions of a disordered solid solution

The Pb(Zr,Ti)O3 (PZT) disordered solid solution is widely used in piezoelectric applications owing to its excellent electromechanical properties. Six different structural phases have been observed for PZT at ambient pressure, each with different lattice parameters and average electric polarization. It is of significant interest to understand the microscopic origin of the complicated phase diagram and local structure of PZT. Here, using density functional theory calculations, we show that the distortions of the material away from the parent perovskite structure can be predicted from the local arrangement of the Zr and Ti cations. We use the chemical rules obtained from density functional theory to create a phenomenological model to simulate PZT structures. We demonstrate how changes in the Zr/Ti composition give rise to phase transitions in PZT through changes in the populations of various local Pb atom environments.

[1]  C. Muller,et al.  Experimental observation of the transition from weak link to tunnel junction , 1992 .

[2]  D. Vanderbilt,et al.  Finite-Temperature Properties of Pb Zr 1 2 x Ti x O 3 Alloys from First Principles , 2000 .

[3]  Landauer theory, inelastic scattering, and electron transport in molecular wires , 1999, cond-mat/9911490.

[4]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[5]  Peter Wyder,et al.  Point-contact spectroscopy in metals , 1980 .

[6]  C. Kergueris,et al.  Electron transport through a metal-molecule-metal junction , 1999, cond-mat/9904037.

[7]  Vieira,et al.  Atomic-sized metallic contacts: Mechanical properties and electronic transport. , 1996, Physical review letters.

[8]  R Ochs,et al.  Driving current through single organic molecules. , 2001, Physical review letters.

[9]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[10]  Christian Joachim,et al.  SPATIALLY RESOLVED TUNNELING ALONG A MOLECULAR WIRE , 1999 .

[11]  Effect of inelastic processes on tunneling. , 1995, Physical review letters.

[12]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[13]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[14]  P. Avouris,et al.  Electrical conductance of individual molecules , 2001 .

[15]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[16]  I. Yanson,et al.  Atlas of Point Contact Spectra of Electron-Phonon Interactions in Metals , 1994 .

[17]  Ho,et al.  Single-molecule vibrational spectroscopy and microscopy , 1998, Science.

[18]  LATTICE DYNAMICS OF BATIO3, PBTIO3, AND PBZRO3 : A COMPARATIVE FIRST-PRINCIPLES STUDY , 1999, cond-mat/9901246.

[19]  E. Emberly,et al.  Comment on "First-principles calculation of transport properties of a molecular device". , 2001, Physical review letters.

[20]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[21]  I. Yanson Nonlinear effects in the electric conductivity of point junctions and electron-phonon interaction in normal metals , 1974 .

[22]  J. M. Ruitenbeek,et al.  Conductance fluctuations as a tool for investigating the quantum modes in atomic-size metallic contacts , 1999, cond-mat/9908139.

[23]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[24]  J. M. Ruitenbeek,et al.  Quantum suppression of shot noise in atom-size metallic contacts , 1998, cond-mat/9810276.

[25]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[26]  L. E. Cross,et al.  A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.

[27]  R. Cohen,et al.  FIRST-PRINCIPLES STUDY OF PIEZOELECTRICITY IN TETRAGONAL PBTIO3 AND PBZR1/2TI1/2O3 , 1998 .

[28]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[29]  N. Agraït,et al.  Quantum interference in atomic-sized point contacts , 2000 .

[30]  Lang,et al.  Resistance of atomic wires. , 1995, Physical review. B, Condensed matter.

[31]  Fang,et al.  Reversible, nanometer-scale conductance transitions in an organic complex , 2000, Physical review letters.

[32]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[33]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[34]  Garcia,et al.  Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles , 2000, Physical review letters.