Mechanism of electron conduction in self-assembled alkanethiol monolayer devices

Electron tunneling through self-assembled monolayers (SAM's) of alkanethiols is investigated using nanometer-scale devices. Temperature-dependent current-voltage measurements are performed on alkanethiol SAM's to distinguish between different conduction mechanisms. Temperature-independent electron transport is observed, proving that tunneling is the dominant conduction mechanism of alkanethiols, as well as exhibiting an exponential dependence of tunneling current on the molecule length with a decay coefficient \ensuremath{\beta}. From the bias dependence of \ensuremath{\beta}, a barrier height ${\ensuremath{\Phi}}_{B}$ of $1.39\ifmmode\pm\else\textpm\fi{}0.01\mathrm{eV}$ and a zero-field decay coefficient ${\ensuremath{\beta}}_{0}$ of $0.79\ifmmode\pm\else\textpm\fi{}0.01{\AA{}}^{\ensuremath{-}1}$ are determined for alkanethiols.

[1]  C. Joachim,et al.  The effective mass of an electron when tunneling through a molecular wire , 2002 .

[2]  J. Tour,et al.  Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. , 2002, Journal of the American Chemical Society.

[3]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[4]  Otto F. Sankey,et al.  Making electrical contacts to molecular monolayers , 2002 .

[5]  A. Ulman,et al.  Ultrathin organic films: From Langmuir-Blodgett to self assembly , 1991 .

[6]  M. Majda,et al.  Mercury−Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers , 1999 .

[7]  George M. Whitesides,et al.  Electron Transport through Thin Organic Films in Metal−Insulator−Metal Junctions Based on Self-Assembled Monolayers , 2001 .

[8]  J. Simmons Conduction in thin dielectric films , 1971 .

[9]  Jeffrey W. Baldwin,et al.  UNIMOLECULAR ELECTRICAL RECTIFICATION IN HEXADECYLQUINOLINIUM TRICYANOQUINODIMETHANIDE , 1997 .

[10]  Vuillaume,et al.  Suppression of charge carrier tunneling through organic self-assembled monolayers. , 1996, Physical review letters.

[11]  M. Linford,et al.  The Kinetics of Electron Transfer Through Ferrocene-Terminated Alkanethiol Monolayers on Gold , 1995 .

[12]  Mathieu Kemp,et al.  Molecular Wires: Charge Transport, Mechanisms, and Control , 1998 .

[13]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[14]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[15]  T. D. Dunbar,et al.  Electron Transfer through Organic Molecules , 1999 .

[16]  C. Mead,et al.  Experimental Determination ofE−kRelationship in Electron Tunneling , 1966 .

[17]  C. Mead,et al.  Experimental Determination of E−k Relationship in Electron Tunneling , 1966 .

[18]  B. Brar,et al.  Direct extraction of the electron tunneling effective mass in ultrathin SiO2 , 1996 .

[19]  Mark A. Reed,et al.  Electronic transport through metal-1,4-phenylene diisocyanide-metal junctions , 1999 .

[20]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[21]  M. Reed,et al.  Room-Temperature Negative Differential Resistance in Nanoscale Molecular Junctions , 2000 .

[22]  C. Daniel Frisbie,et al.  Distance Dependence of Electron Tunneling through Self-Assembled Monolayers Measured by Conducting Probe Atomic Force Microscopy: Unsaturated versus Saturated Molecular Junctions , 2002 .

[23]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[24]  Hans Kuhn,et al.  Tunneling through Fatty Acid Salt Monolayers , 1971 .

[25]  John K. Tomfohr,et al.  Changes in the Electronic Properties of a Molecule When It Is Wired into a Circuit , 2002 .

[26]  J. Sagiv,et al.  Electrical conduction through adsorbed monolayers , 1978 .

[27]  D. A. Sullivan,et al.  Gas-Phase Ion and Neutral Thermochemistry , 1988 .

[28]  M. Reed,et al.  Nanoscale metal/self-assembled monolayer/metal heterostructures , 1997 .

[29]  R. Buhrman,et al.  Fabrication of thin‐film metal nanobridges , 1989 .

[30]  G. Whitesides,et al.  A versatile experimental approach for understanding electron transport through organic materials , 2002 .

[31]  C. Mead,et al.  The effect of nonparabolic energy bands on tunneling through thin insulating films , 1966 .

[32]  M. Fujihira,et al.  Photoemission from polyethylene , 1972 .

[33]  C. Joachim,et al.  The resistance of a (Xe)n atomic wire , 1997 .

[34]  Tian,et al.  Electronic conduction through organic molecules. , 1996, Physical review. B, Condensed matter.

[35]  J. Maserjian,et al.  Tunneling through thin MOS structures: Dependence on energy (E‐κ) , 1974 .