Use of noble gases xenon and krypton as heavy atoms in protein structure determination.

Publisher Summary This chapter presents various aspects of the preparation of xenon and krypton derivatives and their use as heavy atoms or anomalous scatterers in protein crystallography. The noble gas atoms are able to diffuse rapidly toward potential interaction sites in proteins via the solvent channels that are always present in crystals of macromolecules. Xenon and krypton derivatives of proteins can be obtained by subjecting a native protein crystal to a xenon or krypton gas atmosphere pressurized in the range of 1–100 bar. The number and occupancies of xenon/krypton-binding sites vary with the applied pressure. The interaction of noble gas atoms with proteins is the result of noncovalent weak-energy van der Waals forces, and therefore the process of xenon/krypton binding is completely reversible. With proteins, however, the interactions of xenon and krypton are of noncovalent origin and are therefore similar in nature to the forces that give rise to the formation of other well-known complexes of xenon and krypton with small molecules. The key physical parameter in xenon/krypton–protein interactions is the electronic polarizability of the noble gas atoms. The usual repulsive forces between atoms and molecules that are in close contact with each other also play an important role because they determine the minimum size that a cavity must have for xenon or krypton to bind into it. With the current emphasis on high-throughput macromolecular crystallography, the use of xenon and krypton derivatives should feature prominently in the list of available tools to solve protein structures.

[1]  Colin Nave,et al.  Comparison of Radiation-Induced Decay and Structure Refinement from X-Ray Data Collected from Lysozyme Crystals at Low and Ambient Temperatures , 1993 .

[2]  D. Rees,et al.  Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination , 1996, Science.

[3]  W. Loomis,et al.  Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils , 1946, The Journal of physiology.

[4]  C. Je Retention of noble gases by silver zeolite iodine samples. , 1981 .

[5]  K. Miller,et al.  Xenon NMR: chemical shifts of a general anesthetic in common solvents, proteins, and membranes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Yamakura,et al.  A Transmembrane Site Determines Sensitivity of Neuronal Nicotinic Acetylcholine Receptors to General Anesthetics* , 2000, The Journal of Biological Chemistry.

[7]  Xiaodong Cheng,et al.  Crystal structure of the conserved core of protein arginine methyltransferase PRMT3 , 2000, The EMBO journal.

[8]  I D Kuntz,et al.  Computational studies of the interaction of myoglobin and xenon. , 1986, Journal of molecular biology.

[9]  B. Matthews,et al.  Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. , 2000, Journal of molecular biology.

[10]  T. Bestor,et al.  Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. , 2001, Nucleic acids research.

[11]  R. Leng,et al.  Loss of Methyl Tritium from [3H] Acetate in Rumen Fluid , 1965, Nature.

[12]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[13]  H. Conn Equilibrium distribution of radioxenon in tissue: xenon-hemoglobin association curve. , 1961, Journal of applied physiology.

[14]  B. Schoenborn,et al.  Binding of Xenon to Sperm Whale Myoglobin , 1965, Nature.

[15]  R. Dickinson,et al.  How does xenon produce anaesthesia? , 1998, Nature.

[16]  T. Prangé,et al.  The catalytic site of serine proteinases as a specific binding cavity for xenon. , 1995, Structure.

[17]  M. Field,et al.  Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics , 1997, Nature Structural Biology.

[18]  Wen-Ching Wang,et al.  Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. , 2001, Journal of molecular biology.

[19]  G. Rummel,et al.  Low-resolution detergent tracing in protein crystals using xenon or krypton to enhance X-ray contrast. , 2002, Acta crystallographica. Section D, Biological crystallography.

[20]  Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Israelachvili Intermolecular and surface forces , 1985 .

[22]  A. Schmidt,et al.  Freeze-Trapping Isomorphous Xenon Derivatives of Protein Crystals , 1997 .

[23]  J Hermans,et al.  Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. , 2000, Journal of molecular biology.

[24]  S. Lippard,et al.  Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. , 2001, Biochemistry.

[25]  D Eisenberg,et al.  Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. , 1997, Science.

[26]  Z Dauter,et al.  Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. , 2000, Acta crystallographica. Section D, Biological crystallography.

[27]  T. Prangé,et al.  Molecular structure of the lipoamide dehydrogenase domain of a surface antigen from Neisseria meningitidis. , 1997, Journal of molecular biology.

[28]  R. Battino,et al.  Low-pressure solubility of gases in liquid water , 1977 .

[29]  J. Rose,et al.  Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum. , 2001, Biochemistry.

[30]  G Bricogne,et al.  High-pressure krypton gas and statistical heavy-atom refinement: a successful combination of tools for macromolecular structure determination. , 1997, Acta crystallographica. Section D, Biological crystallography.

[31]  G. Pollack,et al.  Solubility of xenon in liquid n‐alkanols: Thermodynamic functions in simple polar liquids , 1984 .

[32]  Peter W. Carr,et al.  Solubility of xenon in 45 organic solvents including cycloalkanes, acids, and alkanals: Experiment and theory , 1989 .

[33]  B. Vallet,et al.  Anesthésie au xénon : du mythe à la réalité , 2001 .

[34]  T. Richmond,et al.  Structure of the soluble domain of a membrane-anchored thioredoxin-like protein from Bradyrhizobium japonicum reveals unusual properties. , 2001, Journal of molecular biology.

[35]  B. Schoenborn Binding of Cyclopropane to Sperm Whale Myoglobin , 1967, Nature.

[36]  B. Matthews,et al.  Generation of noble-gas binding sites for crystallographic phasing using site-directed mutagenesis. , 2002, Acta crystallographica. Section D, Biological crystallography.

[37]  T. Prangé,et al.  On the Preparation and X-Ray Data-Collection of Isomorphous Xenon Derivatives , 1994 .

[38]  S. Almo,et al.  Using xenon as a heavy atom for determining phases in sperm whale metmyoglobin , 1991 .

[39]  H. Desvaux,et al.  Magnetization transfer from laser‐polarized xenon to protons located in the hydrophobic cavity of the wheat nonspecific lipid transfer protein , 2001, Protein science : a publication of the Protein Society.

[40]  I. Kuntz,et al.  Protein-ligand dynamics. A 96 picosecond simulation of a myoglobin-xenon complex. , 1988, Journal of molecular biology.

[41]  B. Schoenborn,et al.  The binding of xenon of sperm whale deoxymyoglobin. , 1966, Molecular pharmacology.

[42]  D E McRee,et al.  Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. , 2000, Molecular cell.

[43]  MAD phasing with krypton. , 2001, Acta crystallographica. Section D, Biological crystallography.

[44]  J. Rose,et al.  Crystal structure of the transcription factor sc‐mtTFB offers insights into mitochondrial transcription , 2001, Protein science : a publication of the Protein Society.

[45]  T. Prangé,et al.  Crystal Structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution , 1997, Nature Structural Biology.

[46]  V. Villeret,et al.  Crystal structure of a D-aminopeptidase from Ochrobactrum anthropi, a new member of the 'penicillin-recognizing enzyme' family. , 2000, Structure.

[47]  T. Yamakura,et al.  Effects of Gaseous Anesthetics Nitrous Oxide and Xenon on Ligand-gated Ion Channels: Comparison with Isoflurane and Ethanol , 2000, Anesthesiology.

[48]  D. Rees,et al.  Successful flash‐cooling of xenon‐derivatized myoglobin crystals , 1997 .

[49]  A method to stabilize reduced and/or gas-treated protein crystals by flash-cooling under a controlled atmosphere , 1999 .

[50]  B. Schoenborn,et al.  Binding of Xenon to Horse Haemoglobin , 1965, Nature.

[51]  B. Schoenborn,et al.  Molecular forces in anesthesia. , 1967, Advances in pharmacology.

[52]  J L Sussman,et al.  Three‐dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors , 2000, Protein science : a publication of the Protein Society.

[53]  Dichloromethane and myoglobin function. , 1973 .

[54]  B P Schoenborn,et al.  Structure of alkaline metmyoglobin-xenon complex. , 1969, Journal of molecular biology.

[55]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[56]  H. Schwilden,et al.  200 Jahre Lachgas - Auch das Ende einer Ära? , 2001 .

[57]  P. Fromme,et al.  Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system , 1996, Nature Structural Biology.

[58]  M Schiltz,et al.  Exploring hydrophobic sites in proteins with xenon or krypton , 1998, Proteins.

[59]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[60]  F. Debon,et al.  Further studies on the solubilities of xenon and cyclopropane in blood and protein solutions. , 1966, Molecular pharmacology.

[61]  M. D. Lloyd,et al.  Structure of a cephalosporin synthase , 1998, Nature.

[62]  R. Go,et al.  Radiopharmaceuticals for brain imaging. , 1994, Seminars in nuclear medicine.

[63]  I. Kuntz,et al.  Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A. , 1984, Biochemistry.

[64]  William Bourguet,et al.  Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α , 1995, Nature.

[65]  P. Tucker,et al.  Use of dry paraffin oil and Panjelly in the xenon derivatization of protein crystals , 2002 .

[66]  I. Kuntz,et al.  Nuclear magnetic resonance studies of xenon-129 with myoglobin and hemoglobin. , 1982, Biochemistry.

[67]  Z. Dauter,et al.  Biological Crystallography Protein Crystal Structure Solution by Fast Incorporation of Negatively and Positively Charged Anomalous Scatterers , 2022 .

[68]  R. F. Tilton A fixture for X-ray crystallographic studies of biomolecules under high gas pressure , 1988 .

[69]  V. Malashkevich,et al.  The Crystal Structure of a Five-Stranded Coiled Coil in COMP: A Prototype Ion Channel? , 1996, Science.

[70]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[71]  M G Rossmann,et al.  Structure of bacteriophage T4 fibritin M: a troublesome packing arrangement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[72]  N. Chayen,et al.  Structure of lobster apocrustacyanin A1 using softer X-rays. , 2001, Acta crystallographica. Section D, Biological crystallography.

[73]  T. Prangé,et al.  Protein Crystallography at Ultra-Short Wavelengths: Feasibility Study of Anomalous-Dispersion Experiments at the Xenon K-edge. , 1997, Journal of synchrotron radiation.

[74]  G. Petsko,et al.  A structure of sperm whale myoglobin at a nitrogen gas pressure of 145 atmospheres. , 1988, Biochemistry.

[75]  J. Irwin,et al.  Crystal structure of the anti-fungal target N-myristoyl transferase , 1998, Nature Structural Biology.

[76]  R. Battino,et al.  Krypton, xenon, and radon : gas solubilities , 1979 .

[77]  S. C. Cullen,et al.  The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. , 1951, Science.

[78]  J. W. Peters,et al.  A simple device for studying macromolecular crystals under moderate gas pressures (0.1–10 MPa) , 1996 .

[79]  R. M. Featherstone,et al.  THE CURRENT ROLE OF INERT GASES IN THE SEARCH FOR ANESTHESIA MECHANISMS , 1963 .

[80]  S. Maestas,et al.  The thermodynamics of absorption of xenon by myoglobin. , 1970, The Journal of physical chemistry.

[81]  T. Teng,et al.  Mounting of crystals for macromolecular crystallography in a free-standing thin film , 1990 .

[82]  P. Bjorkman,et al.  Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion. , 1998, Science.

[83]  P. Tucker,et al.  A cell for producing xenon-derivative crystals for cryocrystallographic analysis , 1998 .

[84]  W. Zimmermann,et al.  High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. , 1998, Structure.

[85]  J. Kendrew,et al.  Binding of mercuri-iodide and related ions to crystals of sperm whale metmyoglobin. , 1968, Journal of molecular biology.

[86]  J. Pedelacq,et al.  Crystal Structure of the Arcelin-1 Dimer from Phaseolus vulgaris at 1.9-Å Resolution* , 1998, The Journal of Biological Chemistry.

[87]  G. Pollack,et al.  Pressure dependence of the solubility of nitrogen, argon, krypton, and xenon in water , 1990 .

[88]  James H. Scofield,et al.  X-Ray Attenuation Cross Sections for Energies 100 eV to 100 keV and Elements Z = 1 to Z = 92 , 1988 .

[89]  N. Grishin,et al.  Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. , 2000, Structure.

[90]  S. Benson foundations of chemical kinetics , 1960 .

[91]  M. Weiss,et al.  On the routine use of soft X-rays in macromolecular crystallography. , 2001, Acta crystallographica. Section D, Biological crystallography.

[92]  F. London,et al.  The general theory of molecular forces , 1937 .

[93]  F. Cramer,et al.  ber Einschluverbindungen, XII. Verbindungen von a-Cyclodextrin mit Gasen , 1957 .

[94]  M. Welch,et al.  Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY , 1998, Nature Structural Biology.