Adaptive sup-norm regularized simultaneous multiple quantiles regression
暂无分享,去创建一个
[1] Keith Knight,et al. Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .
[2] Hansheng Wang,et al. Computational Statistics and Data Analysis a Note on Adaptive Group Lasso , 2022 .
[3] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[4] Hao Helen Zhang,et al. Variable selection for the multicategory SVM via adaptive sup-norm regularization , 2008, 0803.3676.
[5] Sungwan Bang,et al. Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization , 2012, Comput. Stat. Data Anal..
[6] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[7] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Via the LAD-Lasso , 2008 .
[8] H. Zou,et al. The F ∞ -norm support vector machine , 2008 .
[9] R. Koenker,et al. Regression Quantiles , 2007 .
[10] R. Koenker,et al. Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .
[11] R. Koenker. Quantile regression for longitudinal data , 2004 .
[12] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .
[13] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[14] J. Friedman,et al. Predicting Multivariate Responses in Multiple Linear Regression , 1997 .
[15] Jinfeng Xu,et al. Simultaneous estimation and variable selection in median regression using Lasso-type penalty , 2010, Annals of the Institute of Statistical Mathematics.
[16] Hui Zou,et al. Computational Statistics and Data Analysis Regularized Simultaneous Model Selection in Multiple Quantiles Regression , 2022 .
[17] Stephen J. Wright,et al. Simultaneous Variable Selection , 2005, Technometrics.
[18] Achievement Motivation for Introductory College Biology , 2013 .
[19] Ji Zhu,et al. Variable selection for multicategory SVM via sup-norm regularization , 2006 .
[20] Song Yang,et al. Censored Median Regression Using Weighted Empirical Survival and Hazard Functions , 1999 .
[21] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[22] R. Koenker. Quantile Regression: Name Index , 2005 .
[23] Yufeng Liu,et al. Simultaneous multiple non-crossing quantile regression estimation using kernel constraints , 2011, Journal of nonparametric statistics.
[24] Ming Yuan,et al. GACV for quantile smoothing splines , 2006, Comput. Stat. Data Anal..
[25] Xuming He,et al. Detecting Differential Expressions in GeneChip Microarray Studies , 2007 .
[26] Alexander J. Smola,et al. Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..
[27] C. Geyer. On the Asymptotics of Constrained $M$-Estimation , 1994 .
[28] Yufeng Liu,et al. Stepwise multiple quantile regression estimation using non-crossing constraints , 2009 .
[29] M. Yuan,et al. On the non‐negative garrotte estimator , 2007 .
[30] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[31] Rian,et al. Non-crossing quantile regression curve estimation , 2010 .
[32] Yufeng Liu,et al. VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .
[33] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[34] H. Bondell,et al. Noncrossing quantile regression curve estimation. , 2010, Biometrika.
[35] M. Yuan,et al. On the Nonnegative Garrote Estimator , 2005 .
[36] G. Wahba,et al. A NOTE ON THE LASSO AND RELATED PROCEDURES IN MODEL SELECTION , 2006 .
[37] Timo Similä,et al. Input selection and shrinkage in multiresponse linear regression , 2007, Comput. Stat. Data Anal..
[38] Ji Zhu,et al. L1-Norm Quantile Regression , 2008 .
[39] B. Skagerberg,et al. Multivariate data analysis applied to low-density polyethylene reactors , 1992 .
[40] Roger W. Johnson. Fitting Percentage of Body Fat to Simple Body Measurements: College Women , 1996, Journal of Statistics and Data Science Education.