Syntaxin1A Lateral Diffusion Reveals Transient and Local SNARE Interactions

At the synapse, vesicles stably dock at the active zone. However, in cellular membranes, proteins undergo a diffusive motion. It is not known how the motion of membrane proteins involved in vesicle exocytosis is compatible with both vesicle docking and the dynamic remodeling of the plasma membrane imposed by cycles of exocytosis and endocytosis. To address this question, we studied the motion of the presynaptic membrane protein syntaxin1A at both the population and single-molecule levels in primary cultures of rat spinal cord neurons. Syntaxin1A was rapidly exchanged between synaptic and extrasynaptic regions. Changes in syntaxin1A mobility were associated with interactions related to the formation of the exocytotic complex. Finally, we propose a reaction-diffusion model reconciling the observed diffusive properties of syntaxin at the population level and at the molecular level. This work allows us to describe the diffusive behavior and kinetics of interactions between syntaxin1A and its partners that lead to its transient stabilization at the synapse.

[1]  Manuela Schmidt,et al.  Characterization of Eag1 Channel Lateral Mobility in Rat Hippocampal Cultures by Single-Particle-Tracking with Quantum Dots , 2010, PloS one.

[2]  Antoine Triller,et al.  Single‐particle tracking methods for the study of membrane receptors dynamics , 2009, The European journal of neuroscience.

[3]  C. Specht,et al.  Gephyrin Oligomerization Controls GlyR Mobility and Synaptic Clustering , 2009, The Journal of Neuroscience.

[4]  K. Mikoshiba,et al.  Activity-Dependent Tuning of Inhibitory Neurotransmission Based on GABAAR Diffusion Dynamics , 2009, Neuron.

[5]  B. Barak,et al.  Friends and foes in synaptic transmission: the role of tomosyn in vesicle priming , 2009, Trends in Neurosciences.

[6]  R. Tsien,et al.  The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles , 2009, Science.

[7]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[8]  N. Ziv,et al.  Exchange and Redistribution Dynamics of the Cytoskeleton of the Active Zone Molecule Bassoon , 2009, The Journal of Neuroscience.

[9]  Christian Rosenmund,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to 12 Tables S1 and S2 References and Notes Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion , 2022 .

[10]  Daniel Choquet,et al.  New Concepts in Synaptic Biology Derived from Single-Molecule Imaging , 2008, Neuron.

[11]  O. Pascual,et al.  Homeostatic Regulation of Synaptic GlyR Numbers Driven by Lateral Diffusion , 2008, Neuron.

[12]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[13]  Y. Shin,et al.  Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion , 2008, Nature Structural &Molecular Biology.

[14]  Robert J. Harvey,et al.  Gephyrin: where do we stand, where do we go? , 2008, Trends in Neurosciences.

[15]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[16]  A. Brunger,et al.  Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. , 2008, Structure.

[17]  D. Atlas,et al.  Depolarization-Evoked Secretion Requires Two Vicinal Transmembrane Cysteines of Syntaxin 1A , 2007, PloS one.

[18]  Thorsten Lang,et al.  Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster , 2007, Science.

[19]  Paul Greengard,et al.  Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix , 2007, The Journal of Neuroscience.

[20]  A. Trubuil,et al.  Visualization and quantification of vesicle trafficking on a three‐dimensional cytoskeleton network in living cells , 2007, Journal of microscopy.

[21]  Ute Becherer,et al.  Primed Vesicles Can Be Distinguished from Docked Vesicles by Analyzing Their Mobility , 2007, The Journal of Neuroscience.

[22]  Nils Brose,et al.  Molecular Dynamics of a Presynaptic Active Zone Protein Studied in Munc13-1–Enhanced Yellow Fluorescent Protein Knock-In Mutant Mice , 2006, The Journal of Neuroscience.

[23]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[24]  M. Dahan,et al.  Cytoskeleton Regulation of Glycine Receptor Number at Synapses and Diffusion in the Plasma Membrane , 2006, The Journal of Neuroscience.

[25]  Florian Müller,et al.  Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. , 2006, Biophysical journal.

[26]  Eckart D Gundelfinger,et al.  Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics , 2006, PLoS biology.

[27]  A. Triller,et al.  Activity-Dependent Movements of Postsynaptic Scaffolds at Inhibitory Synapses , 2006, The Journal of Neuroscience.

[28]  E. Lemke,et al.  Single Synaptic Vesicle Tracking in Individual Hippocampal Boutons at Rest and during Synaptic Activity , 2005, The Journal of Neuroscience.

[29]  R. Shigemoto,et al.  Differential distribution of release‐related proteins in the hippocampal CA3 area as revealed by freeze‐fracture replica labeling , 2005, The Journal of comparative neurology.

[30]  Maryann E Martone,et al.  Evidence for Ectopic Neurotransmission at a Neuronal Synapse , 2005, Science.

[31]  Axel T Brunger,et al.  Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. , 2005, Biophysical journal.

[32]  M. Saxton,et al.  Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. , 2005, Biophysical journal.

[33]  Simon J. Mitchell,et al.  Munc18-dependent regulation of synaptic vesicle exocytosis by syntaxin-1A in hippocampal neurons , 2005, Neuropharmacology.

[34]  R. Pego,et al.  Analysis of binding reactions by fluorescence recovery after photobleaching. , 2004, Biophysical journal.

[35]  Simon J. Mitchell,et al.  Syntaxin-1A Is Excluded from Recycling Synaptic Vesicles at Nerve Terminals , 2004, The Journal of Neuroscience.

[36]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[37]  E. Neher,et al.  Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23 , 2003, Cell.

[38]  T. Waldmann,et al.  Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Triller,et al.  The role of receptor diffusion in the organization of the postsynaptic membrane , 2003, Nature Reviews Neuroscience.

[40]  M Edidin,et al.  Measurement of membrane protein lateral diffusion in single cells. , 2003, Science.

[41]  Thomas C. Südhof,et al.  Snares and munc18 in synaptic vesicle fusion , 2002, Nature Reviews Neuroscience.

[42]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[43]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[44]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[45]  A. Triller,et al.  Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons , 2000, The European journal of neuroscience.

[46]  J. Rothman,et al.  The use of pHluorins for optical measurements of presynaptic activity. , 2000, Biophysical journal.

[47]  D. Langosch,et al.  A Conserved Membrane-spanning Amino Acid Motif Drives Homomeric and Supports Heteromeric Assembly of Presynaptic SNARE Proteins* , 2000, The Journal of Biological Chemistry.

[48]  T. Galli,et al.  Role of Tetanus Neurotoxin Insensitive Vesicle-Associated Membrane Protein (Ti-Vamp) in Vesicular Transport Mediating Neurite Outgrowth , 2000, The Journal of cell biology.

[49]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[50]  T. Südhof,et al.  A conformational switch in syntaxin during exocytosis: role of munc18 , 1999, The EMBO journal.

[51]  K. Broadie,et al.  Syntaxin 1A Interacts with Multiple Exocytic Proteins to Regulate Neurotransmitter Release In Vivo , 1999, Neuron.

[52]  C. Bergounioux,et al.  Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons , 1998 .

[53]  M. Saxton Anomalous diffusion due to binding: a Monte Carlo study. , 1996, Biophysical journal.

[54]  P. De Camilli,et al.  rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin , 1995, The Journal of cell biology.

[55]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.

[56]  A. Kusumi,et al.  Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. , 1993, Biophysical journal.

[57]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[58]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[59]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[60]  David A. Williams,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single – Quantum Dot Tracking , 2012 .

[61]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[62]  Marie-Virginie Ehrensperger Suivi de molécules uniques à l'aide de nanocristaux semiconducteurs : méthodes et application à l'étude de la dynamique du récepteur de la glycine , 2007 .

[63]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[64]  L. Donald Partridge,et al.  Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis , 2002, Nature Neuroscience.

[65]  C. Garner,et al.  The presynaptic cytomatrix of brain synapses , 2001, Cellular and Molecular Life Sciences CMLS.

[66]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[67]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.