A Pattern Classification Approach to DNA Microarray Image Segmentation

A new method for DNA microarray image segmentation based on pattern recognition techniques is introduced. The method performs an unsupervised classification of pixels using a clustering algorithm, and a subsequent supervised classification of the resulting regions. Additional fine tuning includes detecting region edges and merging, and morphological operators to eliminate noise from the spots. The results obtained on various microarray images show that the proposed technique is quite promising for segmentation of DNA microarray images, obtaining a very high accuracy on background and noise separation.

[1]  Carlos Caldas,et al.  Microarray segmentation methods significantly influence data precision. , 2004, Nucleic acids research.

[2]  Adrian E. Raftery,et al.  Donuts, scratches and blanks: robust model-based segmentation of microarray images , 2005, Bioinform..

[3]  Li Qin,et al.  An Improved Clustering-Based Approach for DNA Microarray Image Segmentation , 2004, ICIAR.

[4]  Shigeo Abe,et al.  Support Vector Machines for Pattern Classification (Advances in Pattern Recognition) , 2005 .

[5]  Jesús Angulo,et al.  Automatic analysis of DNA microarray images using mathematical morphology , 2003, Bioinform..

[6]  Mohamed S. Kamel,et al.  Image Analysis and Recognition , 2014, Lecture Notes in Computer Science.

[7]  Cor J. Veenman,et al.  A weighted nearest mean classifier for sparse subspaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Li Qin,et al.  A New Method for DNA Microarray Image Segmentation , 2005, ICIAR.

[10]  Gregory F. Cooper,et al.  Exact model averaging with naive Bayesian classifiers , 2002, ICML.

[11]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yang Song,et al.  IKNN: Informative K-Nearest Neighbor Pattern Classification , 2007, PKDD.

[13]  Joost N. Kok,et al.  Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, September 17-21, 2007, Proceedings , 2007, PKDD.

[14]  Sorin Drăghici,et al.  Data Analysis Tools for DNA Microarrays , 2003 .

[15]  Bruce A. Draper,et al.  PCA vs. ICA: A Comparison on the FERET Data Set , 2002, JCIS.

[16]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[17]  Hong Yan,et al.  Microarray Image Processing Based on Clustering and Morphological Analysis , 2003, APBC.

[18]  Richard Beare Regularized Seeded Region Growing , 2002 .

[19]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[20]  Jerzy Jurka,et al.  HERVd: the Human Endogenous RetroViruses Database: update , 2004, Nucleic Acids Res..

[21]  Jean Yee Hwa Yang,et al.  Analysis of CDNA Microarray Images , 2001, Briefings Bioinform..

[22]  Reshma Khemchandani,et al.  Twin Support Vector Machines for Pattern Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[24]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.