Utilização de redes neurais artificiais para detecção de padrões de vazamento em dutos

[1]  Frank L. Borchardt Neural Network Computing and Natural Language Processing , 2013, CALICO Journal.

[2]  I. Guyon,et al.  Neural networks and applications tutorial , 1991 .

[3]  R. C. Tees Review of The organization of behavior: A neuropsychological theory. , 2003 .

[4]  Angus R. Simpson,et al.  LEAK DETECTION IN PIPELINES USING THE DAMPING OF FLUID TRANSIENTS , 2002 .

[5]  Anna Helena Reali Costa,et al.  Segmentação de imagens por classificação de cores: uma abordagem neural , 2000 .

[6]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[7]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[8]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[9]  S. Grossberg,et al.  Pattern Recognition by Self-Organizing Neural Networks , 1991 .

[10]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[11]  Alessandro Goedtel Estimador neural de velocidade para motores de indução trifásicos , 2007 .

[12]  Abdulrahman Mohammad Al-khomairi Leak detection in long pipelines using the least squares method , 2008 .

[13]  Gualtiero Piccinini,et al.  The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity” , 2004, Synthese.

[14]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[15]  Sun Li-ying,et al.  Leakage detection and location for long range oil pipeline using negative pressure wave technique , 2009, 2009 4th IEEE Conference on Industrial Electronics and Applications.

[16]  Paulo Seleghim,et al.  Online Identification of Horizontal Two-Phase Flow Regimes Through Gabor Transform and Neural Network Processing , 2007 .

[17]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[18]  Fiorenzo Filippetti,et al.  Recent developments of induction motor drives fault diagnosis using AI techniques , 2000, IEEE Trans. Ind. Electron..

[19]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[20]  J. Liggett,et al.  Inverse Transient Analysis in Pipe Networks , 1994 .

[21]  M. F. Selli IDENTIFICAÇÃO DE PADRÕES DE ESCOAMENTO HORIZONTAL BIFÁSICO GÁS-LÍQUIDO ATRAVÉS DE DISTRIBUIÇÃO TEMPO-FREQÜÊNCIA E REDES NEURAIS , 2007 .

[22]  Richard J. Reid,et al.  Convergence in Iteratively Formed Correlation Matrix Memories , 1975, IEEE Transactions on Computers.

[23]  Pascal Stouffs,et al.  Pipeline leak detection based on mass balance: Importance of the packing term , 1993 .

[24]  Georgios A. Papadakis,et al.  EU initiative on the control of major accident hazards arising from pipelines , 1999 .

[25]  Zheng Yi Wu,et al.  WATER LOSS DETECTION VIA GENETIC ALGORITHM OPTIMIZATION-BASED MODEL CALIBRATION , 2008 .

[26]  Gene A. Tagliarini,et al.  Optimization Using Neural Networks , 1991, IEEE Trans. Computers.

[27]  H. D. Luke,et al.  The origins of the sampling theorem , 1999 .

[28]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[29]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[30]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Hamande,et al.  New system pinpoints leaks in ethylene pipeline , 1995 .

[32]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  Teuvo Kohonen,et al.  Correlation Matrix Memories , 1972, IEEE Transactions on Computers.