Almost Event-Rate Independent Monitoring of Metric Dynamic Logic

Linear temporal logic (LTL) and its quantitative extension metric temporal logic (MTL) are standard languages for specifying system behaviors. Regular expressions are an even more expressive formalism in the non-metric setting and several extensions of LTL, including the recently proposed linear dynamic logic (LDL), offer regular-expression-like constructs. We extend LDL with past operators and quantitative features. The resulting metric dynamic logic (MDL) offers the quantitative temporal conveniences of MTL while increasing its expressiveness. We develop and evaluate an online monitoring algorithm for MDL whose space-consumption is almost event-rate independent—a notion that characterizes monitors that scale to high-velocity event streams.

[1]  Paul Caspi,et al.  Timed regular expressions , 2002, JACM.

[2]  César Sánchez,et al.  Regular Linear Temporal Logic with Past , 2010, VMCAI.

[3]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[4]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[5]  Giuseppe De Giacomo,et al.  Linear Temporal Logic and Linear Dynamic Logic on Finite Traces , 2013, IJCAI.

[6]  P. S. Thiagarajan,et al.  Dynamic Linear Time Temporal Logic , 1997 .

[7]  Martin Zimmermann,et al.  Parametric Linear Dynamic Logic , 2014, GandALF.

[8]  Christian Dax,et al.  On Regular Temporal Logics with Past, , 2009, ICALP.

[9]  Dogan Ulus Montre: A Tool for Monitoring Timed Regular Expressions , 2017, CAV.

[10]  César Sánchez,et al.  Regular Linear Temporal Logic , 2007, ICTAC.

[11]  David A. Basin,et al.  Almost Event-Rate Independent Monitoring of Metric Temporal Logic , 2017, TACAS.

[12]  Patricia Bouyer,et al.  On the expressiveness of TPTL and MTL , 2010, Inf. Comput..

[13]  Marco Montali,et al.  Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces , 2014, BPM.

[14]  Valentin M. Antimirov Partial Derivatives of Regular Expressions and Finite Automaton Constructions , 1996, Theor. Comput. Sci..

[15]  Christos A. Kapoutsis Removing Bidirectionality from Nondeterministic Finite Automata , 2005, MFCS.

[16]  Grigore Rosu,et al.  Monitoring Algorithms for Metric Temporal Logic Specifications , 2004, RV@ETAPS.

[17]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[18]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[19]  Moshe Y. Vardi From Church and Prior to PSL , 2008, 25 Years of Model Checking.

[20]  Felix Klaedtke,et al.  Monitoring Metric First-Order Temporal Properties , 2015, J. ACM.

[21]  Felix Klaedtke,et al.  Runtime Monitoring of Metric First-order Temporal Properties , 2008, FSTTCS.

[22]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[23]  Dogan Ulus,et al.  Timed Pattern Matching , 2014, FORMATS.

[24]  KoymansRon Specifying real-time properties with metric temporal logic , 1990 .

[25]  Marco Montali,et al.  LTLf and LDLf Monitoring: A Technical Report , 2014, ArXiv.

[26]  Grigore Rosu,et al.  Synthesizing Monitors for Safety Properties , 2002, TACAS.

[27]  Felix Klaedtke,et al.  Algorithms for monitoring real-time properties , 2011, Acta Informatica.

[28]  Dogan Ulus,et al.  Online Timed Pattern Matching Using Derivatives , 2016, TACAS.