The Alternation Hierarchy for the Theory of mu-lattices

The alternation hierarchy problem asks whether every mu-term, that is a term built up using also a least fixed point constructor as well as a greatest fixed point constructor, is equivalent to a mu-term where the number of nested fixed point of a different type is bounded by a fixed number. In this paper we give a proof that the alternation hierarchy for the theory of mu-lattices is strict, meaning that such number does not exist if mu-terms are built up from the basic lattice operations and are interpreted as expected. The proof relies on the explicit characterization of free mu-lattices by means of games and strategies.

[1]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[2]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[3]  Luca Aceto,et al.  2-Nested Simulation Is Not Finitely Equationally Axiomatizable , 2000, STACS.

[4]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[5]  Luca Aceto,et al.  Characteristic formulae for timed automata , 2000, RAIRO Theor. Informatics Appl..

[6]  Julian C. Bradfield,et al.  The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[7]  Damian Niwiński,et al.  Equational μ-calculus , 1985 .

[8]  André Arnold,et al.  p329 The µ-calculus alternation-depth hierarchy is strict on binary trees , 1999, RAIRO Theor. Informatics Appl..

[9]  Fahd Ali Al-Agl,et al.  Theory and Applications of Categories , 1993 .

[10]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[11]  Zoltán Ésik,et al.  Continuous Additive Algebras and Injective Simulations of Synchronization Trees , 2000, J. Log. Comput..

[12]  André Joyal,et al.  Coherence Completions of Categories , 1999, Theor. Comput. Sci..

[13]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[14]  P. M. Whitman,et al.  Free Lattices II , 1942 .

[15]  A. Joyal Free Lattices, Communication and Money Games , 1997 .

[16]  Vinodchandran Variyam A Note on NP \ coNP=poly , 2000 .

[17]  Rajeev Alur,et al.  Heuristics for Hierarchical Partitioning with Application to Model Checking , 2000, CHARME.

[18]  Anders B. Sandholm,et al.  Using Automata in Control Synthesis. A Case Study , 2000 .

[19]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[20]  Igor Walukiewicz,et al.  Completeness of Kozen's axiomatisation of the propositional /spl mu/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[21]  Giacomo Lenzi A Hierarchy Theorem for the µ-Calculus , 1996, ICALP.

[22]  Claus Brabrand,et al.  Growing languages with metamorphic syntax macros , 2000, PEPM '02.

[23]  Samson Abramsky,et al.  Concurrent games and full completeness , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[24]  A. Hales,et al.  On the non-existence of free complete Boolean algebras , 1964 .

[25]  Richard A. Dean,et al.  FREE LATTICES WITH INFINITE OPERATIONS , 1959 .

[26]  Julian C. Bradfield Simplifying the Modal Mu-Calculus Alternation Hierarchy , 1998, STACS.

[27]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[28]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[29]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[30]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[31]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..