The Alternation Hierarchy for the Theory of mu-lattices
暂无分享,去创建一个
[1] A. Arnold,et al. Rudiments of μ-calculus , 2001 .
[2] Igor Walukiewicz,et al. Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..
[3] Luca Aceto,et al. 2-Nested Simulation Is Not Finitely Equationally Axiomatizable , 2000, STACS.
[4] Damian Niwinski. On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.
[5] Luca Aceto,et al. Characteristic formulae for timed automata , 2000, RAIRO Theor. Informatics Appl..
[6] Julian C. Bradfield,et al. The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..
[7] Damian Niwiński,et al. Equational μ-calculus , 1985 .
[8] André Arnold,et al. p329 The µ-calculus alternation-depth hierarchy is strict on binary trees , 1999, RAIRO Theor. Informatics Appl..
[9] Fahd Ali Al-Agl,et al. Theory and Applications of Categories , 1993 .
[10] G. Birkhoff,et al. On the Structure of Abstract Algebras , 1935 .
[11] Zoltán Ésik,et al. Continuous Additive Algebras and Injective Simulations of Synchronization Trees , 2000, J. Log. Comput..
[12] André Joyal,et al. Coherence Completions of Categories , 1999, Theor. Comput. Sci..
[13] Ludwig Staiger,et al. Ω-languages , 1997 .
[14] P. M. Whitman,et al. Free Lattices II , 1942 .
[15] A. Joyal. Free Lattices, Communication and Money Games , 1997 .
[16] Vinodchandran Variyam. A Note on NP \ coNP=poly , 2000 .
[17] Rajeev Alur,et al. Heuristics for Hierarchical Partitioning with Application to Model Checking , 2000, CHARME.
[18] Anders B. Sandholm,et al. Using Automata in Control Synthesis. A Case Study , 2000 .
[19] L. Santocanale,et al. Free μ-lattices , 2000 .
[20] Igor Walukiewicz,et al. Completeness of Kozen's axiomatisation of the propositional /spl mu/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[21] Giacomo Lenzi. A Hierarchy Theorem for the µ-Calculus , 1996, ICALP.
[22] Claus Brabrand,et al. Growing languages with metamorphic syntax macros , 2000, PEPM '02.
[23] Samson Abramsky,et al. Concurrent games and full completeness , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[24] A. Hales,et al. On the non-existence of free complete Boolean algebras , 1964 .
[25] Richard A. Dean,et al. FREE LATTICES WITH INFINITE OPERATIONS , 1959 .
[26] Julian C. Bradfield. Simplifying the Modal Mu-Calculus Alternation Hierarchy , 1998, STACS.
[27] Andreas Blass,et al. A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..
[28] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[29] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[30] Radha Jagadeesan,et al. Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..
[31] Wieslaw Zielonka,et al. Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..