Frequency estimation based on the cumulated Lomb–Scargle periodogram

We consider the problem of estimating the period of an unknown periodic function observed in additive Gaussian noise sampled at irregularly spaced time instants in a semiparametric setting. To solve this problem, we propose a novel estimator based on the cumulated Lomb-Scargle periodogram. We prove that this estimator is consistent, asymptotically Gaussian and we provide an explicit expression of the asymptotic variance. Some Monte Carlo experiments are then presented to support our claims. Copyright 2008 The Authors. Journal compilation 2008 Blackwell Publishing Ltd

[1]  Jon A. Wellner,et al.  Application of convolution theorems in semiparametric models with non-i.i.d. data , 2000 .

[2]  Thomas Ruf,et al.  The Lomb-Scargle Periodogram in Biological Rhythm Research: Analysis of Incomplete and Unequally Spaced Time-Series , 1999 .

[3]  Carole Thiebaut,et al.  Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series , 2005, EURASIP J. Adv. Signal Process..

[4]  Jie Chen,et al.  Bioinformatics Original Paper Detecting Periodic Patterns in Unevenly Spaced Gene Expression Time Series Using Lomb–scargle Periodograms , 2022 .

[5]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[6]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[7]  William H. Press,et al.  Numerical recipes in C , 2002 .

[8]  J. Scargle Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .

[9]  Céline Lévy-Leduc,et al.  Efficient Semiparametric Estimation of the Periods in a Superposition of Periodic Functions with Unknown Shape , 2006 .

[10]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[11]  Elias Masry,et al.  Spectral estimation of continuous-time stationary processes from random sampling , 1994 .

[12]  E. J. Hannan,et al.  The estimation of frequency , 1973, Journal of Applied Probability.

[13]  W. Steiger A Best Possible Kolmogoroff-Type Inequality for Martingales and a Characteristic Property , 1969 .

[14]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[15]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[16]  B. G. Quinn,et al.  Estimating the frequency of a periodic function , 1991 .

[17]  Peter Hall,et al.  Nonparametric estimation of a periodic function , 2000 .

[18]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[19]  Shean-Tsong Chiu,et al.  Peak-insensitive parametric spectrum estimation , 1990 .

[20]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[21]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[22]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[23]  Peak-insensitive Nonparametric Spectrum Estimation , 1994 .

[24]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .