The Continuing Mystery of Lipid Rafts.

[1]  Rienk van Grondellea,et al.  Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes , 2018 .

[2]  M. Waxham,et al.  Remodeling of the postsynaptic plasma membrane during neural development , 2016, Molecular biology of the cell.

[3]  B. Machta,et al.  Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia. , 2016, Biophysical journal.

[4]  B. Machta,et al.  Allosteric Regulation by a Critical Membrane , 2016, 1607.06836.

[5]  Jeffrey T. Chang,et al.  Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts , 2016, Oncotarget.

[6]  T. Fujiwara,et al.  Raft-based interactions of gangliosides with a GPI-anchored receptor. , 2016, Nature chemical biology.

[7]  S. Veatch,et al.  Spot size variation FCS in simulations of the 2D Ising model , 2016, Journal of physics D: Applied physics.

[8]  M. A. Surma,et al.  Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order. , 2016, Biophysical journal.

[9]  I. Levental,et al.  Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. , 2015, Chemistry and physics of lipids.

[10]  D. Ray,et al.  Membrane Transition Temperature Determines Cisplatin Response , 2015, PloS one.

[11]  S. Veatch,et al.  Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles , 2015, PloS one.

[12]  R. Pastor,et al.  Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin. , 2015, Biophysical journal.

[13]  S. Veatch,et al.  Erratum: Steady-state cross-correlations for live two-colour super-resolution localization data sets , 2015, Nature Communications.

[14]  Sarah L. Veatch,et al.  Steady-state cross-correlations for live two-colour super-resolution localization data sets , 2015, Nature Communications.

[15]  E. London,et al.  Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. , 2015, Biophysical journal.

[16]  M. Grzybek,et al.  MPP1 as a Factor Regulating Phase Separation in Giant Plasma Membrane-Derived Vesicles , 2015, Biophysical journal.

[17]  M. Rao,et al.  Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins , 2015, Cell.

[18]  P. Schwille,et al.  Adaptive Lipid Packing and Bioactivity in Membrane Domains , 2015, PloS one.

[19]  C. Kelly,et al.  Trace membrane additives affect lipid phases with distinct mechanisms: a modified Ising model , 2015, European Biophysics Journal.

[20]  M. Brameshuber,et al.  GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane , 2015, Nature Communications.

[21]  David G. Ackerman,et al.  Multiscale modeling of four-component lipid mixtures: domain composition, size, alignment, and properties of the phase interface. , 2015, The journal of physical chemistry. B.

[22]  Hector H. Huang,et al.  Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures. , 2015, The journal of physical chemistry. B.

[23]  D. Andelman,et al.  Budding of domains in mixed bilayer membranes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  K. Levental,et al.  Giant plasma membrane vesicles: models for understanding membrane organization. , 2015, Current topics in membranes.

[25]  K. Levental,et al.  Isolation of giant plasma membrane vesicles for evaluation of plasma membrane structure and protein partitioning. , 2015, Methods in molecular biology.

[26]  K. Levental,et al.  Rafting through traffic: Membrane domains in cellular logistics. , 2014, Biochimica et biophysica acta.

[27]  S. Veatch,et al.  Oxygen depletion speeds and simplifies diffusion in HeLa cells. , 2014, Biophysical journal.

[28]  A. Ono,et al.  Basic Motifs Target PSGL-1, CD43, and CD44 to Plasma Membrane Sites Where HIV-1 Assembles , 2014, Journal of Virology.

[29]  Helgi I Ingólfsson,et al.  Lipid organization of the plasma membrane. , 2014, Journal of the American Chemical Society.

[30]  Matthew B Stone,et al.  Far-red organic fluorophores contain a fluorescent impurity. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Thorsten Lang,et al.  Multi-protein assemblies underlie the mesoscale organization of the plasma membrane , 2014, Nature Communications.

[32]  K. Levental,et al.  Membrane raft association is a determinant of plasma membrane localization , 2014, Proceedings of the National Academy of Sciences.

[33]  Derick R. Peterson,et al.  Plasma phospholipids identify antecedent memory impairment in older adults , 2014, Nature Medicine.

[34]  G. E. Atilla‐Gokcumen,et al.  Dividing Cells Regulate Their Lipid Composition and Localization , 2014, Cell.

[35]  E. London,et al.  Preparation of Artificial Plasma Membrane Mimicking Vesicles with Lipid Asymmetry , 2014, PloS one.

[36]  S. Hell,et al.  A lipid bound actin meshwork organizes liquid phase separation in model membranes , 2014, eLife.

[37]  B. Baird,et al.  Distinct stages of stimulated FcεRI receptor clustering and immobilization are identified through superresolution imaging. , 2013, Biophysical journal.

[38]  Hong Liang,et al.  Bile Acids Modulate Signaling by Functional Perturbation of Plasma Membrane Domains* , 2013, The Journal of Biological Chemistry.

[39]  Roie Shlomovitz,et al.  Model of a raft in both leaves of an asymmetric lipid bilayer. , 2013, Biophysical journal.

[40]  Benjamin B Machta,et al.  Liquid general anesthetics lower critical temperatures in plasma membrane vesicles. , 2013, Biophysical journal.

[41]  S. Safran,et al.  Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  S. Hess,et al.  Bleed-through correction for rendering and correlation analysis in multi-colour localization microscopy , 2013, Journal of optics.

[43]  D. Tieleman,et al.  Computer simulations of lipid membrane domains. , 2013, Biochimica et biophysica acta.

[44]  W. Prinz,et al.  Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells , 2013, The Journal of cell biology.

[45]  S. Safran,et al.  Hybrid lipids increase the probability of fluctuating nanodomains in mixed membranes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[46]  S. Veatch,et al.  Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. , 2013, Biophysical journal.

[47]  G. Feigenson,et al.  Toward a better raft model: modulated phases in the four-component bilayer, DSPC/DOPC/POPC/CHOL. , 2013, Biophysical journal.

[48]  K. Nagashima,et al.  Roles Played by Capsid-Dependent Induction of Membrane Curvature and Gag-ESCRT Interactions in Tetherin Recruitment to HIV-1 Assembly Sites , 2013, Journal of Virology.

[49]  U. Lüning,et al.  Mixing Liquids-Mission Impossible? A Colorful Demonstration on Immiscible Systems , 2013 .

[50]  Hans-Georg Kräusslich,et al.  Comparative lipidomics analysis of HIV‐1 particles and their producer cell membrane in different cell lines , 2013, Cellular microbiology.

[51]  P. Olmsted,et al.  Critical point fluctuations in supported lipid membranes. , 2013, Faraday discussions.

[52]  B. Goldstein,et al.  A Mechanistic Model of Early FcεRI Signaling: Lipid Rafts and the Question of Protection from Dephosphorylation , 2012, PloS one.

[53]  H. Mcconnell Single molecule diffusion in critical lipid bilayers. , 2012, The Journal of chemical physics.

[54]  Kenichi G. N. Suzuki Lipid rafts generate digital‐like signal transduction in cell plasma membranes , 2012, Biotechnology journal.

[55]  M. Rao,et al.  Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules , 2012, Cell.

[56]  P. Schwille,et al.  Elucidating membrane structure and protein behavior using giant plasma membrane vesicles , 2012, Nature Protocols.

[57]  M. A. Surma,et al.  Flexibility of a Eukaryotic Lipidome – Insights from Yeast Lipidomics , 2012, PloS one.

[58]  J. Sethna,et al.  Critical Casimir forces in cellular membranes. , 2012, Physical review letters.

[59]  P. Schwille,et al.  Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. , 2012, Biochimica et biophysica acta.

[60]  A. Shevchenko,et al.  Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane , 2012, The Journal of cell biology.

[61]  R. Pepperkok,et al.  Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain , 2012, Nature.

[62]  Astrid Magenau,et al.  Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution , 2012, Nature Communications.

[63]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[64]  B. Machta,et al.  Experimental observations of dynamic critical phenomena in a lipid membrane. , 2011, Physical review letters.

[65]  Markus R Wenk,et al.  Comparative Lipidomic Analysis of Mouse and Human Brain with Alzheimer Disease* , 2011, The Journal of Biological Chemistry.

[66]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[67]  S W Hell,et al.  STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. , 2011, Biophysical journal.

[68]  Christer S. Ejsing,et al.  Generic Sorting of Raft Lipids into Secretory Vesicles in Yeast , 2011, Traffic.

[69]  Megha,et al.  YybT Is a Signaling Protein That Contains a Cyclic Dinucleotide Phosphodiesterase Domain and a GGDEF Domain with ATPase Activity* , 2009, The Journal of Biological Chemistry.

[70]  K. Simons,et al.  Raft domains of variable properties and compositions in plasma membrane vesicles , 2011, Proceedings of the National Academy of Sciences.

[71]  Kai Simons,et al.  Regulation of human EGF receptor by lipids , 2011, Proceedings of the National Academy of Sciences.

[72]  Kai Simons,et al.  Membrane lipidome of an epithelial cell line , 2011, Proceedings of the National Academy of Sciences.

[73]  Fredrik Karpe,et al.  Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry , 2011, Nature Methods.

[74]  P. Schwille,et al.  Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. , 2010, Biophysical journal.

[75]  J. Sethna,et al.  Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. , 2010, Biophysical journal.

[76]  D. Lingwood,et al.  Palmitoylation regulates raft affinity for the majority of integral raft proteins , 2010, Proceedings of the National Academy of Sciences.

[77]  Akihiro Kusumi,et al.  Membrane molecules mobile even after chemical fixation , 2010, Nature Methods.

[78]  Endre Kiss,et al.  Imaging of Mobile Long-lived Nanoplatforms in the Live Cell Plasma Membrane* , 2010, The Journal of Biological Chemistry.

[79]  Kai Simons,et al.  Revitalizing membrane rafts: new tools and insights , 2010, Nature Reviews Molecular Cell Biology.

[80]  Kai Simons,et al.  Greasing their way: lipid modifications determine protein association with membrane rafts. , 2010, Biochemistry.

[81]  T. Baumgart,et al.  Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. , 2010, Biochimica et biophysica acta.

[82]  J. Dinić,et al.  Limited cholesterol depletion causes aggregation of plasma membrane lipid rafts inducing T cell activation. , 2010, Biochimica et biophysica acta.

[83]  R. Brewster,et al.  Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. , 2010, Biophysical journal.

[84]  Y. Korchev,et al.  Plasma membrane topography and interpretation of single-particle tracks , 2010, Nature Methods.

[85]  Mark M Davis,et al.  TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation , 2010, Nature Immunology.

[86]  P. Janmey,et al.  Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. , 2009, The Biochemical journal.

[87]  P. Schwille,et al.  PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[88]  D. Lingwood,et al.  Order of lipid phases in model and plasma membranes , 2009, Proceedings of the National Academy of Sciences.

[89]  F. McLafferty,et al.  IgE receptor-mediated alteration of membrane-cytoskeleton interactions revealed by mass spectrometric analysis of detergent-resistant membranes. , 2009, Biochemistry.

[90]  Christer S. Ejsing,et al.  Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network , 2009, The Journal of cell biology.

[91]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[92]  Christer S. Ejsing,et al.  Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[93]  M. Rao,et al.  Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity , 2008, Cell.

[94]  Siewert J. Marrink,et al.  The molecular face of lipid rafts in model membranes , 2008, Proceedings of the National Academy of Sciences.

[95]  Kai Simons,et al.  Plasma membranes are poised for activation of raft phase coalescence at physiological temperature , 2008, Proceedings of the National Academy of Sciences.

[96]  Prabuddha Sengupta,et al.  Critical fluctuations in plasma membrane vesicles. , 2008, ACS chemical biology.

[97]  D. Engelman,et al.  Protein area occupancy at the center of the red blood cell membrane , 2008, Proceedings of the National Academy of Sciences.

[98]  P. Cicuta,et al.  Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. , 2008, Biophysical journal.

[99]  P. Sengupta,et al.  Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. , 2008, Biochimica et biophysica acta.

[100]  Tianhai Tian,et al.  Plasma membrane nanoswitches generate high-fidelity Ras signal transduction , 2007, Nature Cell Biology.

[101]  Watt W. Webb,et al.  Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles , 2007, Proceedings of the National Academy of Sciences.

[102]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[103]  P. Janmey,et al.  Biophysical properties of lipids and dynamic membranes. , 2006, Trends in cell biology.

[104]  Thomas Schmidt,et al.  Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors. , 2006, Biophysical journal.

[105]  K. R. Seddon,et al.  Mutually immiscible ionic liquids. , 2006, Chemical communications.

[106]  Hans-Georg Kräusslich,et al.  The HIV lipidome: a raft with an unusual composition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Dan V. Nicolau,et al.  Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane , 2006, Molecular and Cellular Biology.

[108]  Sarah L Veatch,et al.  Seeing spots: complex phase behavior in simple membranes. , 2005, Biochimica et biophysica acta.

[109]  Frederick A. Heberle,et al.  Fluorescence methods to detect phase boundaries in lipid bilayer mixtures. , 2005, Biochimica et biophysica acta.

[110]  Deborah A. Brown,et al.  Palmitoylation and Intracellular Domain Interactions Both Contribute to Raft Targeting of Linker for Activation of T Cells* , 2005, Journal of Biological Chemistry.

[111]  P. Schwille,et al.  Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. , 2005, Biochemistry.

[112]  Akihiro Kusumi,et al.  Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. , 2005, Seminars in immunology.

[113]  Jennifer Lippincott-Schwartz,et al.  Dynamics of putative raft-associated proteins at the cell surface , 2004, The Journal of cell biology.

[114]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[115]  I. V. Polozov,et al.  Liquid domains in vesicles investigated by NMR and fluorescence microscopy. , 2004, Biophysical journal.

[116]  M. Vrljic,et al.  Liquid-liquid immiscibility in membranes. , 2003, Annual review of biophysics and biomolecular structure.

[117]  Michael P. Sheetz,et al.  Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[119]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[120]  Robert G. Parton,et al.  Direct visualization of Ras proteins in spatially distinct cell surface microdomains , 2003, The Journal of cell biology.

[121]  M. Resh,et al.  Cholesterol Depletion from the Plasma Membrane Triggers Ligand-independent Activation of the Epidermal Growth Factor Receptor* , 2002, The Journal of Biological Chemistry.

[122]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[123]  S. Hiscox,et al.  GPI-anchored GFP signals Ca2+ but is homogeneously distributed on the cell surface. , 2002, Biochemical and biophysical research communications.

[124]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[125]  Pranav Sharma,et al.  GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. , 2002, Developmental cell.

[126]  Akihiro Kusumi,et al.  Relationship of lipid rafts to transient confinement zones detected by single particle tracking. , 2002, Biophysical journal.

[127]  A. V. Samsonov,et al.  Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. , 2001, Biophysical journal.

[128]  T. Haines,et al.  Do sterols reduce proton and sodium leaks through lipid bilayers? , 2001, Progress in lipid research.

[129]  G. Feigenson,et al.  Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. , 2001, Biophysical journal.

[130]  Robert G. Parton,et al.  GTP-dependent segregation of H-ras from lipid rafts is required for biological activity , 2001, Nature Cell Biology.

[131]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[132]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[133]  C. Martínez-A,et al.  Membrane raft microdomains mediate lateral assemblies required for HIV‐1 infection , 2000, EMBO reports.

[134]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[135]  F W McLafferty,et al.  Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. , 1999, Biochemistry.

[136]  B. Baird,et al.  Critical Role for Cholesterol in Lyn-mediated Tyrosine Phosphorylation of FcεRI and Their Association with Detergent-resistant Membranes , 1999, The Journal of cell biology.

[137]  T. Harder,et al.  Clusters of glycolipid and glycosylphosphatidylinositol‐anchored proteins in lymphoid cells : accumulation of actin regulated by local tyrosine phosphorylation , 1999, European journal of immunology.

[138]  P. Scheiffele,et al.  Influenza Viruses Select Ordered Lipid Domains during Budding from the Plasma Membrane* , 1999, The Journal of Biological Chemistry.

[139]  H. Mcconnell,et al.  Red Blood Cell Lipids Form Immiscible Liquids , 1998 .

[140]  S. Mayor,et al.  GPI-anchored proteins are organized in submicron domains at the cell surface , 1998, Nature.

[141]  D. Brown,et al.  Structure and Origin of Ordered Lipid Domains in Biological Membranes , 1998, The Journal of Membrane Biology.

[142]  Kai Simons,et al.  Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components , 1998, The Journal of cell biology.

[143]  Kai Simons,et al.  Interaction of influenza virus haemagglutinin with sphingolipid–cholesterol membrane domains via its transmembrane domain , 1997, The EMBO journal.

[144]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[145]  M. Roth,et al.  Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells , 1996, The Journal of cell biology.

[146]  R. Griffin,et al.  A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. , 1993, Biochemistry.

[147]  Deborah A. Brown,et al.  Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface , 1992, Cell.

[148]  A. Wandinger-Ness,et al.  Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells , 1990, The Journal of cell biology.

[149]  James H. Davis,et al.  Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. , 1990, Biochemistry.

[150]  H. Mcconnell,et al.  Critical shape transitions of monolayer lipid domains. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[151]  M. Roth,et al.  Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts , 1989, The Journal of cell biology.

[152]  G van Meer,et al.  Lipid sorting in epithelial cells. , 1988, Biochemistry.

[153]  G. Karlström,et al.  Phase equilibria in the phosphatidylcholine-cholesterol system. , 1987, Biochimica et biophysica acta.

[154]  K. Simons,et al.  The trans Golgi network: sorting at the exit site of the Golgi complex. , 1986, Science.

[155]  R. Scott,et al.  Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization. , 1979, Journal of cell science.

[156]  H. Mcconnell,et al.  Lateral phase separations in binary mixtures of cholesterol and phospholipids. , 1973, Biochemical and biophysical research communications.

[157]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[158]  D. Chapman,et al.  Nuclear Magnetic Resonance Spectroscopic Studies of the Interaction of Phospholipids with Cholesterol , 1966, Nature.

[159]  S. L. Kittsley,et al.  EIGHT LIQUID PHASES IN STABLE EQUILIBRIUM , 1950 .

[160]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.