Transcriptomic analyses of murine ventricular cardiomyocytes

[1]  E. Petretto,et al.  Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy , 2017, Genome Biology.

[2]  Thomas V. Karathanos,et al.  Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm , 2017, Nature Communications.

[3]  D. Roden,et al.  Contrasting Nav1.8 Activity in Scn10a −/− Ventricular Myocytes and the Intact Heart , 2016, Journal of the American Heart Association.

[4]  J. Amour,et al.  Lateral Membrane-Specific MAGUK CASK Down-Regulates NaV1.5 Channel in Cardiac Myocytes. , 2016, Circulation research.

[5]  L. Mestroni,et al.  Natural History of Dilated Cardiomyopathy in Children , 2016, Journal of the American Heart Association.

[6]  E. Behr,et al.  Next-Generation Sequencing in Post-mortem Genetic Testing of Young Sudden Cardiac Death Cases , 2016, Front. Cardiovasc. Med..

[7]  R. Passier,et al.  Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells , 2015, Development.

[8]  J. Jalife,et al.  Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. , 2015, Circulation research.

[9]  T. Zimmer,et al.  Voltage-gated sodium channels in the mammalian heart , 2014, Global cardiology science & practice.

[10]  Ludovic C. Gillet,et al.  Abstract 18492: Cardiac-specific Ablation of Synapse-Associated Protein SAP97 in Mice Decreases Potassium Currents but Not Sodium Current , 2014 .

[11]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[12]  W. Catterall,et al.  Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry. , 2013, Journal of molecular and cellular cardiology.

[13]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[14]  D. F. Steele,et al.  Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. , 2012, Physiological reviews.

[15]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[16]  Stefan Luther,et al.  SAP97 and Dystrophin Macromolecular Complexes Determine Two Pools of Cardiac Sodium Channels Nav1.5 in Cardiomyocytes , 2011, Circulation research.

[17]  Xiao-dong Zhao,et al.  Human calcium/calmodulin-dependent serine protein kinase regulates the expression of p21 via the E2A transcription factor. , 2009, The Biochemical journal.

[18]  J. Zavadil,et al.  Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. , 2007, Physiological genomics.

[19]  Frances M. Ashcroft,et al.  From molecule to malady , 2006, Nature.

[20]  B. Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[21]  C. Vandenberg,et al.  A Multiprotein Trafficking Complex Composed of SAP97, CASK, Veli, and Mint1 Is Associated with Inward Rectifier Kir2 Potassium Channels* , 2004, Journal of Biological Chemistry.

[22]  M. Sheng,et al.  Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2 , 2000, Nature.

[23]  B. A. French,et al.  Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. , 1997, The Journal of clinical investigation.

[24]  V. Chapman,et al.  Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Rougier,et al.  Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current. , 2017, Cell calcium.

[26]  D. Driscoll,et al.  Congenital Heart Diseases: The Broken Heart , 2016, Springer Vienna.