Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation

[1]  S. Pratsinis,et al.  Structure of flame-made vanadia/titania and catalytic behavior in the partial oxidation of o-xylene , 2008 .

[2]  D. Gu,et al.  A Novel Method for Preparing V-doped Titanium Dioxide Thin Film Photocatalysts with High Photocatalytic Activity Under Visible Light Irradiation , 2007 .

[3]  L. Mädler,et al.  Photocatalytic mineralisation of organic compounds: a comparison of flame-made TiO2 catalysts , 2007 .

[4]  Lutz Mädler,et al.  Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid , 2007 .

[5]  Jinlong Zhang,et al.  Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization , 2006 .

[6]  S. Pratsinis,et al.  Ag-ZnO catalysts for UV-photodegradation of methylene blue , 2006 .

[7]  Jinlong Zhang,et al.  Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+ , 2006 .

[8]  L. Mädler,et al.  Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose , 2005 .

[9]  A. Selloni,et al.  First-principles studies of vanadia-titania catalysts: beyond the monolayer. , 2005, The journal of physical chemistry. B.

[10]  S. Pratsinis,et al.  Droplet and particle dynamics during flame spray synthesis of nanoparticles , 2005 .

[11]  M. Anpo,et al.  THE PREPARATION AND CHARACTERIZATION OF HIGHLY EFFICIENT TITANIUM OXIDE-BASED PHOTOFUNCTIONAL MATERIALS , 2005 .

[12]  W. Stark,et al.  Flame-Made Pt/Ceria/Zirconia for Low-Temperature Oxygen Exchange , 2005 .

[13]  Jiaguo Yu,et al.  Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. , 2005, Environmental science & technology.

[14]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[15]  Jinlong Zhang,et al.  Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water , 2004 .

[16]  J. Wu,et al.  A visible-light response vanadium-doped titania nanocatalyst by sol–gel method , 2004 .

[17]  Sotiris E. Pratsinis,et al.  Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation , 2004 .

[18]  M. Anpo,et al.  Application of an Ion Beam Technique for the Design of Visible Light-Sensitive, Highly Efficient and Highly Selective Photocatalysts: Ion-Implantation and Ionized Cluster Beam Methods , 2004 .

[19]  W. Stark,et al.  Flame-made nanocrystalline ceria/zirconia: structural properties and dynamic oxygen exchange capacity , 2003 .

[20]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[21]  H. Yamashita,et al.  Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts , 2002 .

[22]  B. Grzybowska,et al.  Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia–titania catalysts , 2002 .

[23]  Chuncheng Chen,et al.  Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst , 2002 .

[24]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[25]  G. Marcì,et al.  Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol , 2002 .

[26]  M. Larrubia,et al.  An ultraviolet–visible–near infrared study of the electronic structure of oxide-supported vanadia–tungsta and vanadia–molybdena , 2001 .

[27]  L. Mädler,et al.  Flame Synthesis of Nanoparticles , 2001 .

[28]  D. Raftery,et al.  Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol , 2001 .

[29]  P. Boolchand,et al.  Processing of iron-doped titania powders in flame aerosol reactors , 2001 .

[30]  D. Raftery,et al.  Characterization of Surface and Photooxidative Properties of Supported Metal Oxide Photocatalysts Using Solid-State NMR , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[31]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[32]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[33]  Jincai Zhao,et al.  Evidence for H2O2 Generation during the TiO2-Assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination , 1999 .

[34]  T. Yoko,et al.  Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region , 1999 .

[35]  Jincai Zhao,et al.  Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO2 Particles , 1998 .

[36]  Jimmy C. Yu,et al.  Enhanced photocatalytic activity of Ti1−xVxO2 solid solution on the degradation of acetone , 1997 .

[37]  R. Egdell,et al.  NATURE OF BAND-GAP STATES IN V-DOPED TIO2 REVEALED BY RESONANT PHOTOEMISSION , 1997 .

[38]  R. Bonetto,et al.  Structural modelling of coprecipitated VTiO catalysts , 1996 .

[39]  M. Bañares,et al.  The Role of Vanadium Oxide on the Titania Transformation under Thermal Treatments and Surface Vanadium States , 1996 .

[40]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[41]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[42]  S. Martin,et al.  Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles , 1994 .

[43]  Y. Do,et al.  Enhancement of photocatalytic activity of titanium(IV) oxide with molybdenum(VI) oxide , 1993 .

[44]  J. Katz,et al.  Formation of V_2O_5-based mixed oxides in flames , 1993 .

[45]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[46]  A. Davidson,et al.  Temperature-induced diffusion of probe vanadium(IV) ions into the matrix of titanium dioxide as investigated by ESR techniques , 1992 .

[47]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[48]  A. K. Ray,et al.  Photocatalytic Decomposition of Formic Acid Under Visible Light Irradiation Over V-ion-implanted TiO2 Thin Film Photocatalysts Prepared on Quartz Substrate by Ionized Cluster Beam (ICB) Deposition Method , 2006 .

[49]  Margaret S. Wooldridge,et al.  Gas-phase combustion synthesis of particles , 1998 .

[50]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[51]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[52]  B. Grzybowska,et al.  ESR studies of the solid solutions of vanadium ions in TiO2 , 1979 .