Coherent oscillations in the PC577 cryptophyte antenna occur in the excited electronic state.

Transient absorption spectroscopy is a useful measurement for investigating ultrafast dynamics in molecules. We have developed a transient absorption spectrometer that utilizes balanced and fast detection methods to suppress noise and maintain high temporal and spectral resolution. We use the spectrometer to investigate the ultrafast dynamics in a photosynthetic pigment-protein complex, the phycobiliprotein PC577 isolated from the cryptophyte alga Hemiselmis pacifica CCMP706. We analyze coherent oscillations in the transient absorption data and attribute them to vibrational coherences. Analysis of the dynamic Stokes shift and motion of the wave packet on the potential-energy surface indicate that the coherences arise from vibrational wave packets in the excited electronic state of the protein.

[1]  C. Shank,et al.  Selective excitation of vibrational wave packet motion using chirped pulses. , 1995, Physical review letters.

[2]  R. Mathies,et al.  Wave packet theory of dynamic absorption spectra in femtosecond pump–probe experiments , 1990 .

[3]  K. Nelson,et al.  Time‐resolved observations of coherent molecular vibrational motion and the general occurrence of impulsive stimulated scattering , 1987 .

[4]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[5]  M. Maroncelli,et al.  Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation , 1987 .

[6]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[7]  M. Sheves,et al.  Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. , 2007, Journal of the American Chemical Society.

[8]  Su Lin,et al.  Excitation wavelength dependence of energy transfer and charge separation in reaction centers from Rhodobacter sphaeroides: Evidence for adiabatic electron transfer , 1996 .

[9]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[10]  W. Zinth,et al.  Chirp dependence of wave packet motion in oxazine 1. , 2005, The journal of physical chemistry. A.

[11]  P. Curmi,et al.  Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. , 2004, Journal of molecular biology.

[12]  E. Heller The semiclassical way to molecular spectroscopy , 1981 .

[13]  E. Riedle,et al.  Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground , 2009 .

[14]  P. Curmi,et al.  Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645 , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[15]  Stock,et al.  Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump-probe spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  D. Mcbranch,et al.  Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers. , 1998, Optics letters.

[17]  Analysis of wave packet motion in frequency and time domain: oxazine 1. , 2006, The journal of physical chemistry. A.

[18]  N. Hampp,et al.  Ground- and excited-state vibrational coherence dynamics in Bacteriorhodopsin probed with degenerate four-wave-mixing experiments. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  E. Riedle,et al.  Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. , 1997, Optics letters.

[20]  Mokhtari,et al.  Resonant impulsive-stimulated Raman scattering on malachite green. , 1988, Physical review. A, General physics.

[21]  J. Sperling,et al.  High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. , 2011, The journal of physical chemistry. B.

[22]  P. Curmi,et al.  Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis. , 2005, The journal of physical chemistry. B.

[23]  B. Greene,et al.  Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking , 1981, IEEE Journal of Quantum Electronics.

[24]  J. Bigot,et al.  Quantum-mechanical theory for 6 fs dynamic absorption spectroscopy and its application to nile blue , 1990 .

[25]  M. Jones,et al.  Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. , 1994, Biochemistry.

[26]  Takayoshi Kobayashi,et al.  Observation of Herzberg-Teller-type Wave Packet Motion in Porphyrin J-Aggregates Studied by Sub-5-fs Spectroscopy † , 2002 .

[27]  G. Wiederrecht,et al.  Femtosecond Pulse Sequences Used for Optical Manipulation of Molecular Motion , 1990, Science.

[28]  Fabrice Rappaport,et al.  Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy , 1993, Nature.

[29]  G. Lanzani,et al.  Coherent phonon dynamics in semiconducting carbon nanotubes: a quantitative study of electron-phonon coupling. , 2009, Physical review letters.

[30]  Graham R. Fleming,et al.  CHROMOPHORE-SOLVENT DYNAMICS , 1996 .

[31]  Linda A. Peteanu,et al.  Femtosecond impulsive excitation of nonstationary vibrational states in bacteriorhodopsin , 1992 .

[32]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[33]  P. Curmi,et al.  Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. , 2011, Biophysical journal.

[34]  R. Mathies,et al.  Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin , 1992 .

[35]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[36]  T. Aartsma,et al.  Growing-In of Optical Coherence in the FMO Antenna Complexes§ , 2002 .

[37]  J. Bigot,et al.  Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse , 1989 .

[38]  Marcus Motzkus,et al.  Quantum control of energy flow in light harvesting , 2002, Nature.

[39]  A. Zewail,et al.  Femtosecond real‐time observation of wave packet oscillations (resonance) in dissociation reactions , 1988 .

[40]  R. Miller,et al.  Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics. , 2001, Optics letters.

[41]  J. L. Martin,et al.  Femtosecond processes in proteins. , 1999, Biochimica et biophysica acta.

[42]  Graham R. Fleming,et al.  Theory of the time development of the Stokes shift in polar media , 1984 .

[43]  Christopher A Werley,et al.  Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card. , 2011, The Review of scientific instruments.

[44]  Takayoshi Kobayashi,et al.  Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser. , 2011, Biophysical journal.

[45]  Daniel B. Turner,et al.  Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy. , 2012, Nano letters.

[46]  Wolfgang Kaiser,et al.  Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy , 1988 .

[47]  Daniel B. Turner,et al.  Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. , 2012, Physical chemistry chemical physics : PCCP.

[48]  William K. Peters,et al.  Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework , 2012, Proceedings of the National Academy of Sciences.

[49]  Rick Trebino,et al.  Extremely simple single-prism ultrashort- pulse compressor. , 2006, Optics express.

[50]  Tang,et al.  Femtosecond relaxation dynamics of large molecules. , 1986, Physical review letters.

[51]  U. Banin,et al.  Ultrafast photodissociation of I3− in solution: Direct observation of coherent product vibrations , 1992 .

[52]  T. Mančal,et al.  Exciton dynamics in photosynthetic complexes: excitation by coherent and incoherent light , 2010, 1002.0954.

[53]  Gregory D. Scholes,et al.  Comparison of Electronic and Vibrational Coherence Measured by Two-Dimensional Electronic Spectroscopy , 2011 .

[54]  K. Hoef-Emden MOLECULAR PHYLOGENY OF PHYCOCYANIN‐CONTAINING CRYPTOPHYTES: EVOLUTION OF BILIPROTEINS AND GEOGRAPHICAL DISTRIBUTION 1 , 2008, Journal of phycology.

[55]  A. Samanta Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. , 2006, The journal of physical chemistry. B.

[56]  S. Mukamel,et al.  Femtosecond pump-probe spectroscopy of polyatomic molecules in condensed phases. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[57]  M. Maroncelli,et al.  Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited , 1995 .

[58]  T. Renger Theory of excitation energy transfer: from structure to function , 2009, Photosynthesis Research.

[59]  V. Sundström,et al.  Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides , 1994 .

[60]  N. Belabas,et al.  Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra. , 2007, The Journal of chemical physics.

[61]  P. Barbara,et al.  Transient solvation of polar dye molecules in polar aprotic solvents , 1988 .

[62]  D. Nesbitt,et al.  Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. , 2008, The Review of scientific instruments.

[63]  W. F. Beck,et al.  Excited-state vibrational coherence and anisotropy decay in the bacteriochlorophyll a dimer protein B820 , 1998 .

[64]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[65]  E. Carter,et al.  Solvation dynamics for an ion pair in a polar solvent: Time‐dependent fluorescence and photochemical charge transfer , 1991 .

[66]  Cheng,et al.  Theory for displacive excitation of coherent phonons. , 1992, Physical review. B, Condensed matter.

[67]  Paul M G Curmi,et al.  How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. , 2006, The journal of physical chemistry. B.

[68]  N. Scherer,et al.  Heterodyne‐detected time‐domain measurement of I2 predissociation and vibrational dynamics in solution , 1992 .

[69]  Giulio Cerullo,et al.  High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. , 2007, The Review of scientific instruments.

[70]  Patanjali Kambhampati,et al.  Noise analysis and noise reduction methods in kilohertz pump-probe experiments. , 2007, The Review of scientific instruments.

[71]  R. Kosloff,et al.  Chirp effects on impulsive vibrational spectroscopy: a multimode perspective. , 2010, Physical chemistry chemical physics : PCCP.

[72]  Becker,et al.  Femtosecond photon echoes from molecules in solution. , 1989, Physical review letters.

[73]  J. Fujimoto,et al.  Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 K , 1985 .

[74]  S. Savikhin,et al.  Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels , 1997 .

[75]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[76]  D C Youvan,et al.  Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Robert Eugene Blankenship,et al.  Femtosecond Spectroscopy of Chlorosome Antennas from the Green Photosynthetic Bacterium Chloroflexus aurantiacus , 1994 .

[78]  Graham R. Fleming,et al.  Femtosecond solvation dynamics of water , 1994, Nature.

[79]  D. Jonas,et al.  Femtosecond Wavepacket Spectroscopy: Influence of Temperature, Wavelength, and Pulse Duration , 1995 .

[80]  C. Shank,et al.  Femtosecond Chirped Pulse Excitation of Vibrational Wave Packets in LD690 and Bacteriorhodopsin , 1998 .

[81]  R. Maccoll,et al.  A picosecond time-resolved fluorescence study on the biliprotein, phycocyanin 645 , 1991 .

[82]  D. Jonas,et al.  Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26 , 1996 .

[83]  T. Joo,et al.  Coherent excited state intramolecular proton transfer probed by time-resolved fluorescence. , 2009, Physical chemistry chemical physics : PCCP.

[84]  Kyoung Chul Ko,et al.  Coherent Nuclear Wave Packets Generated by Ultrafast Intramolecular Charge-Transfer Reaction , 2012 .