SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations

[1]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[2]  Y. Mo,et al.  Adsorption of 4-mercaptopyridine onto laser-ablated gold, silver and copper oxide films: A comparative surface-enhanced Raman scattering investigation , 2011 .

[3]  L. Depero,et al.  Using aggregates of gold nanorods in SER(R)S experiments: an empirical evaluation of some critical aspects , 2010, Nanotechnology.

[4]  Johann Michler,et al.  Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[5]  N. Kotov,et al.  SERS-active gold lace nanoshells with built-in hotspots. , 2010, Nano letters.

[6]  J. Perry,et al.  Excited-state dynamics and dye-dye interactions in dye-coated gold nanoparticles with varying alkyl spacer lengths. , 2010, Physical chemistry chemical physics : PCCP.

[7]  Francesco Stellacci,et al.  A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly , 2010 .

[8]  A. Agarwal,et al.  Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods , 2009 .

[9]  M. L. Curri,et al.  Photochemical Synthesis of Water-Soluble Gold Nanorods: The Role of Silver in Assisting Anisotropic Growth , 2009 .

[10]  Zhilin Yang,et al.  Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods , 2009 .

[11]  Luca Dal Negro,et al.  Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. , 2009, ACS nano.

[12]  M. Meneghetti,et al.  Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy , 2009 .

[13]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[14]  T. Lee,et al.  SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  Eric Mazur,et al.  Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[16]  J. Zhao,et al.  Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. , 2008, Accounts of chemical research.

[17]  C. Noguez,et al.  Optical Properties of Elongated Noble Metal Nanoparticles , 2008 .

[18]  C. Abell,et al.  Investigating the specific interactions between carbonic anhydrase and a sulfonamide inhibitor by single-molecule force spectroscopy. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  Prashant V Kamat,et al.  Ruthenium(II) trisbipyridine functionalized gold nanorods. Morphological changes and excited-state interactions. , 2007, The journal of physical chemistry. B.

[20]  Latha A. Gearheart,et al.  Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. , 2006, Physical chemistry chemical physics : PCCP.

[21]  X. Li,et al.  Synthesis, structure, and chemistry of new, mixed group 14 and 16 heterocycles: nucleophile-induced ring contraction of mesocyclic dications. , 2006, Journal of the American Chemical Society.

[22]  K. Kneipp,et al.  Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. , 2006, Accounts of chemical research.

[23]  C. Murphy,et al.  Quantitation of metal content in the silver-assisted growth of gold nanorods. , 2006, The journal of physical chemistry. B.

[24]  M. Käll,et al.  Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles , 2006, physics/0601042.

[25]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[26]  Anand Gole,et al.  Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. , 2005, Analytical chemistry.

[27]  R. Álvarez-Puebla,et al.  Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering. , 2005, Analytical chemistry.

[28]  S. Gunasekaran,et al.  Vibrational spectral investigation on xanthine and its derivatives--theophylline, caffeine and theobromine. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Moskovits,et al.  Polarized Surface Enhanced Raman Scattering from Aligned Silver Nanowire Rafts , 2004 .

[31]  S. J. Grabowski,et al.  Infrared, Density-Functional Theory, and Atoms in Molecules Method Studies on Conformers of Some 2-Substituted 1H-Pyrroles , 2003 .

[32]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[33]  Tobin J. Marks,et al.  Layer-by-Layer Self-Assembled Pyrrole-Based Donor-Acceptor Chromophores as Electro-Optic Materials , 2003 .

[34]  A. Abbottoa,et al.  Design and synthesis of heterocyclic multi-branched dyes for two-photon absorption , 2003 .

[35]  Mostafa A. El-Sayed,et al.  Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition , 2002 .

[36]  Tobin J. Marks,et al.  Azinium-(π-bridge)-pyrrole NLO-phores: Influence of heterocycle acceptors on chromophoric and self-assembled thin-film properties , 2002 .

[37]  Jae Hee Song,et al.  Photochemical synthesis of gold nanorods. , 2002, Journal of the American Chemical Society.

[38]  J. Tour,et al.  Chemical and Potential-Assisted Assembly of Thiolacetyl-Terminated Oligo(phenylene ethynylene)s on Gold Surfaces , 2002 .

[39]  Mostafa A. El-Sayed,et al.  Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods , 2001 .

[40]  A. Abbotto,et al.  Heterocycle-based materials for frequency-upconverted lasing , 2001 .

[41]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[42]  A. Abbotto,et al.  Push–Pull Organic Chromophores for Frequency‐Upconverted Lasing , 2000 .

[43]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10) , 2000, astro-ph/0008151.

[44]  M El Sayed,et al.  SHAPE AND SIZE DEPENDENCE OF RADIATIVE, NON-RADIATIVE AND PHOTOTHERMAL PROPERTIES OF GOLD NANOCRYSTALS , 2000 .

[45]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[46]  G. Compagnini,et al.  Distance dependence of surface enhanced Raman scattering probed by alkanethiol self-assembled monolayers , 1999 .

[47]  R. Dasari,et al.  Surface‐enhanced Raman scattering (SERS)—a new tool for single molecule detection and identification , 1998 .

[48]  Paras N. Prasad,et al.  Two-photon pumped frequency-upconversion lasing of a new blue-green dye material , 1997 .

[49]  A. Facchetti,et al.  Heterocycles as donor and acceptor units in push–pull conjugated molecules. Part 1 , 1997 .

[50]  R. Murray,et al.  Infrared Spectroscopy of Three-Dimensional Self-Assembled Monolayers: N-Alkanethiolate Monolayers on Gold Cluster Compounds , 1996 .

[51]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[52]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[53]  A. Obaid,et al.  Vibrational spectra and molecular force field of N-methylpyridinium ion and some deuterated derivatives , 1990 .

[54]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[55]  Anatolii Viacheslavovich Sokolov,et al.  Optical Properties of Metals , 1967 .