Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam

[1]  S W Hell,et al.  Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Giovanni Volpe,et al.  Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams , 2004 .

[3]  K König,et al.  Clinical two‐photon microendoscopy , 2007, Microscopy research and technique.

[4]  L. Fu,et al.  Fibre‐optic nonlinear optical microscopy and endoscopy , 2007, Journal of microscopy.

[5]  In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy , 2001, Nature Medicine.

[6]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[7]  B. Jia,et al.  Polarization characterization in the focal volume of high numerical aperture objectives. , 2010, Optics express.

[8]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[9]  Min Gu,et al.  Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam. , 2013, Optics letters.

[10]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[11]  Min Gu,et al.  Cancer-cell microsurgery using nonlinear optical endomicroscopy. , 2010, Journal of biomedical optics.

[12]  R. Kiesslich,et al.  In-vivo confocal real-time mini-microscopy in animal models of human inflammatory and neoplastic diseases. , 2007, Endoscopy.

[13]  Ilya Golub,et al.  How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Cuifang Kuang,et al.  Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. , 2012, Optics express.

[15]  Andreas Schönle,et al.  Efficient fluorescence inhibition patterns for RESOLFT microscopy. , 2007, Optics express.

[16]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[17]  M. Gu,et al.  Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy. , 2009, Journal of biomedical optics.

[18]  Xu Liu,et al.  Effects of polarization on the de-excitation dark focal spot in STED microscopy , 2010 .

[19]  Ruxin Li,et al.  STED microscopy with the azimuthally-polarized depletion beam , 2007, SPIE/COS Photonics Asia.

[20]  Jianping Ding,et al.  Configurable three-dimensional optical cage generated from cylindrical vector beams , 2009 .

[21]  Qiwen Zhan,et al.  Properties of circularly polarized vortex beams. , 2006, Optics letters.

[22]  Min Gu,et al.  Focusing of doughnut laser beams by a high numerical-aperture objective in free space. , 2003, Optics express.

[23]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[24]  Colin J. R. Sheppard,et al.  Image formation in two-photon fluorescence microscopy , 1990 .

[25]  L. Fu,et al.  Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. , 2006, Optics express.

[26]  M. Gu,et al.  Advanced Optical Imaging Theory , 1999 .

[27]  F. Helmchen,et al.  Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. , 2004, Optics letters.

[28]  M. Neil,et al.  Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. , 2008, Optics letters.

[29]  E. Snitzer,et al.  Observed Dielectric Waveguide Modes in the Visible Spectrum , 1961 .

[30]  Jixiong Pu,et al.  Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens , 2009 .

[31]  Han Lin,et al.  Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam , 2013 .

[32]  R Kompfner,et al.  Resonant scanning optical microscope. , 1978, Applied optics.

[33]  E. Cocker,et al.  In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. , 2005, Optics letters.

[34]  Xingde Li,et al.  Fiber-optic scanning two-photon fluorescence endoscope. , 2006, Optics letters.

[35]  Min Gu,et al.  Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging. , 2008, Optics letters.

[36]  Min Gu,et al.  Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy , 2014, Light: Science & Applications.

[37]  S. Hell,et al.  Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.

[38]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.