Robust sensor scheduling via iterative design for parameter estimation of distributed systems

The problem of selection of measurement data provided by sensor array so as to maximize the accuracy of parameter estimation of a distributed system defined in a given multidimensional domain is discussed. Usually, when designing an identification experiment for nonlinear models, the uncertainty of nominal parameters has to be taken into account. In particular, an iterative scheme for parameter estimation is proposed enhanced with sequential experimental design techniques where there is no particular information about the parameter distribution. The setting examined here correspond to situation where from among the observations provided by nodes of given sensor array the most informative measurements have to be selected in order to provide an update of the parameter estimates. Finally, a proposed approach is verified by a computer simulation regarding heat transfer problem.

[1]  Maciej Patan Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems , 2012 .

[2]  Michael P. Polis,et al.  Comments on "Model-based solution techniques for the source localization problem" , 2002, IEEE Trans. Control. Syst. Technol..

[3]  YangQuan Chen,et al.  Time–Optimal Path Planning of Moving Sensors for Parameter Estimation of Distributed Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Michael A. Demetriou Activation Policy of Smart Controllers for Flexible Structures with Multiple Actuator/Sensor Pairs , 2000 .

[5]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[6]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[7]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach , 2009 .

[8]  YangQuan Chen,et al.  Resource-Constrained Sensor Routing for Parameter Estimation of Distributed Systems , 2008 .

[9]  Maciej Patan,et al.  Sensor network design for the estimation of spatially distributed processes , 2010, Int. J. Appl. Math. Comput. Sci..

[10]  Steven E. Rigdon,et al.  Model-Oriented Design of Experiments , 1997, Technometrics.

[11]  Arye Nehorai,et al.  Localizing vapor-emitting sources by moving sensors , 1996, IEEE Trans. Signal Process..

[12]  G. Goodwin,et al.  Optimum experimental design for identification of distributed parameter systems , 1980 .

[13]  Maciej Patan,et al.  OPTIMAL LOCATION OF DISCRETE SCANNING SENSORS FOR PARAMETER ESTIMATION OF DISTRIBUTED SYSTEMS , 2002 .

[14]  Maciej Patan,et al.  A Parallel Sensor Scheduling Technique for Fault Detection in Distributed Parameter Systems , 2008, Euro-Par.

[15]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[16]  B. Bogacka,et al.  Optimum group designs for random-effects nonlinear dynamic processes , 2010 .

[17]  Christos G. Cassandras,et al.  Sensor Networks and Cooperative Control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[19]  Maciej Patan,et al.  Optimal observation strategies for model-based fault detection in distributed systems , 2005 .

[20]  D. M. Titterington,et al.  Recent advances in nonlinear experiment design , 1989 .

[21]  E. Walter,et al.  Robust experiment design via maximin optimization , 1988 .

[22]  E. Rafajłowicz Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach , 1983 .

[23]  D. Ucinski Optimal sensor location for parameter estimation of distributed processes , 2000 .

[24]  Arye Nehorai,et al.  Landmine detection and localization using chemical sensor array processing , 2000, IEEE Trans. Signal Process..

[25]  E. Rafajłowicz Optimum choice of moving sensor trajectories for distributed-parameter system identification , 1986 .

[26]  Dariusz Ucinski,et al.  Sensor network scheduling for identification of spatially distributed processes , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[27]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[28]  A. Vande Wouwer,et al.  Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design , 1996 .

[29]  Maciej Patan,et al.  Distributed scheduling of sensor networks for identification of spatio-temporal processes , 2012, Int. J. Appl. Math. Comput. Sci..

[30]  Maciej Patan Optimal activation policies for continuous scanning observations in parameter estimation of distributed systems , 2006, Int. J. Syst. Sci..

[31]  Maciej Patan,et al.  Configuring A Sensor Network for Fault Detection in Distributed Parameter Systems , 2008, Int. J. Appl. Math. Comput. Sci..

[32]  Maciej Patan,et al.  D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..

[33]  Maciej Patan,et al.  OPTIMAL ACTIVATION STRATEGY OF DISCRETE SCANNING SENSORS FOR FAULT DETECTION IN DISTRIBUTED-PARAMETER SYSTEMS , 2005 .

[34]  Eric Walter,et al.  Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..

[35]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[36]  Sulema Aranda,et al.  On Optimal Sensor Placement and Motion Coordination for Target Tracking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  V. Isakov Appendix -- Function Spaces , 2017 .

[38]  D. Ucinski Optimal Selection of Measurement Locations for Parameter Estimation in Distributed Processes , 2000 .

[39]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems , 2009 .

[40]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..