Small-Molecule Organics for Redox Flow Batteries – Creation of Highly-Soluble and Stable Compounds

[1]  L. Dubois,et al.  Three-Dimensional-Printed Device for In Situ Monitoring of an Organic Redox-Flow Battery via NMR/MRI. , 2023, Analytical chemistry.

[2]  Vikram Singh,et al.  Controlling π–π Interactions of Highly Soluble Naphthalene Diimide Derivatives for Neutral pH Aqueous Redox Flow Batteries , 2023, Advanced materials.

[3]  Fu-Ming Wang,et al.  Organic redox flow battery: Are organic redox materials suited to aqueous solvents or organic solvents? , 2023, Journal of Power Sources.

[4]  Z. Chang,et al.  Grafting and solubilization of redox-active organic materials for aqueous redox flow batteries. , 2023, ChemSusChem.

[5]  J. Jeon,et al.  A benzo[a]phenazine-based redox species with highly reversible two-electron reaction for aqueous organic redox flow batteries , 2023, Electrochimica Acta.

[6]  Zhijiang Tang,et al.  High Energy Density Aqueous Flow Battery Utilizing Extremely Stable, Branching-Induced High-Solubility Anthraquinone near Neutral pH , 2022, ACS Energy Letters.

[7]  T. Liu,et al.  A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage. , 2022, Angewandte Chemie.

[8]  K. Stevenson,et al.  Phenazine-Based Compound as a Universal Water-Soluble Anolyte Material for the Redox Flow Batteries , 2022, Batteries.

[9]  S. Licoccia,et al.  A Neutral‐pH Aqueous Redox Flow Battery Based on Sustainable Organic Electrolytes , 2022, ChemElectroChem.

[10]  C. Amador-Bedolla,et al.  Reversible Redox Chemistry in a Phenoxazine-Based Organic Compound: A Two-Electron Storage Negolyte for Alkaline Flow Batteries , 2022, ACS Applied Energy Materials.

[11]  Zhengjin Yang,et al.  A PEGylated Viologen for Crossover‐Free and High‐Capacity pH‐Neutral Aqueous Organic Redox Flow Batteries , 2022, Batteries & Supercaps.

[12]  Guihua Yu,et al.  Benzotriazoles as Low-Potential Anolytes for Non-aqueous Redox Flow Batteries , 2022, Chemistry of Materials.

[13]  M. Ulaganathan,et al.  Highly stable asymmetric viologen as an anolyte for aqueous organic and halide based redox flow batteries , 2022, Energy Technology.

[14]  T. Vaid,et al.  High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. , 2022, ACS applied materials & interfaces.

[15]  Mingjun Li,et al.  Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage. , 2022, ACS applied materials & interfaces.

[16]  L. F. Arenas,et al.  A hydroxylated tetracationic viologen based on dimethylaminoethanol as a negolyte for aqueous flow batteries , 2022, Batteries & Supercaps.

[17]  Vikram Singh,et al.  Ammonium‐Functionalized Naphthalene Diimide as Two‐Electron‐Transfer Negolyte for Aqueous Redox Flow Batteries , 2022, Batteries & Supercaps.

[18]  T. L. Liu,et al.  Desymmetrization of Viologen Anolytes Empowering Energy Dense, Ultra Stable Flow Batteries toward Long‐Duration Energy Storage , 2022, Advanced Energy Materials.

[19]  M. R. Mohamed,et al.  Future perspective on redox flow batteries: aqueous versus nonaqueous electrolytes , 2022, Current Opinion in Chemical Engineering.

[20]  Mengqi Gao,et al.  High-power Near-neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. , 2022, Angewandte Chemie.

[21]  K. Stevenson,et al.  Novel Ethylene Glycol Substituted Benzoxadiazole and Benzothiadiazole as Anolytes for Nonaqueous Organic Redox Flow Batteries , 2022, ChemElectroChem.

[22]  Zhengjin Yang,et al.  Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries , 2022, JACS Au.

[23]  B. Levenfeld,et al.  Layer shape LiFePO4 obtained by Powder Extrusion Molding as solid boosters for ferro/ferricyanide catholyte in semisolid redox flow battery: effect of porosity and shape , 2022, Batteries & Supercaps.

[24]  Yuanyuan Chen,et al.  Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries , 2022, ACS energy letters.

[25]  J. Hjelm,et al.  Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries , 2022, Journal of the American Chemical Society.

[26]  Zhong Jin,et al.  Reversible Redox Chemistry in Pyrrolidinium‐Based TEMPO Radical and Extended Viologen for High‐Voltage and Long‐Life Aqueous Redox Flow Batteries , 2022, Advanced Energy Materials.

[27]  Yongchai Kwon,et al.  A strategy for lowering cross-contamination of aqueous redox flow batteries using metal-ligand complexes as redox couple , 2022, Journal of Power Sources.

[28]  M. Ulaganathan,et al.  Modified Viologen as an Efficient Anolyte for Aqueous Organic Redox Flow Batteries , 2022, Materials Letters.

[29]  Zhijiang Tang,et al.  Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method , 2021, ACS Energy Letters.

[30]  R. Gordon,et al.  Highly Stable Low Redox Potential Quinone for Aqueous Flow Batteries , 2021, Batteries & Supercaps.

[31]  T. Vaid,et al.  Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries. , 2021, Angewandte Chemie.

[32]  Jiangxuan Song,et al.  Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. , 2021, Angewandte Chemie.

[33]  Yuyan Shao,et al.  Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes , 2021, Journal of Materials Chemistry A.

[34]  M. Busch,et al.  Naphthalene diimides (NDI) in highly stable pH-neutral aqueous organic redox flow batteries , 2021, Journal of Electroanalytical Chemistry.

[35]  A. Mendes,et al.  On the path to aqueous organic redox flow batteries: Alizarin red S alkaline negolyte. Performance evaluation and photochemical studies , 2021 .

[36]  Yu Zhao,et al.  Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere , 2021, Journal of Power Sources.

[37]  Yongdan Li,et al.  Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries. , 2021, ACS applied materials & interfaces.

[38]  Yunlong Ji,et al.  Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures , 2021 .

[39]  F. Walsh,et al.  A nonaqueous organic redox flow battery using multi-electron quinone molecules , 2021, Journal of Power Sources.

[40]  Yongdan Li,et al.  Membranes in non-aqueous redox flow battery: A review , 2021, Journal of Power Sources.

[41]  Lixin Xia,et al.  Intramolecular hydrogen bonds induced high solubility for efficient and stable anthraquinone based neutral aqueous organic redox flow batteries , 2021 .

[42]  U. Schubert,et al.  Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity , 2021, Molecules.

[43]  L. Chancelier,et al.  Behaviour of 3,4‐Dihydroxy‐9,10‐Anthraquinone‐2‐Sulfonic Acid in Alkaline Medium: Towards a Long‐Cycling Aqueous Organic Redox Flow Battery , 2021, ChemElectroChem.

[44]  Yongdan Li,et al.  A high-rate nonaqueous organic redox flow battery , 2021 .

[45]  S. Patil,et al.  Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Non-aqueous Redox Flow Battery. , 2021, Chemistry.

[46]  T. Zhao,et al.  Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries , 2021 .

[47]  J. Košek,et al.  Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application , 2021, Molecules.

[48]  K. Stevenson,et al.  New highly soluble triarylamine-based materials as promising catholytes for redox flow batteries , 2021, Journal of Materials Chemistry A.

[49]  D. Larcher,et al.  LiFePO4-ferri/ferrocyanide redox targeting aqueous posolyte: Set-up, efficiency and kinetics , 2021 .

[50]  Yu-Liang Yang,et al.  Manufacture of non-aqueous redox flow batteries using sulfate-templated Dawson-type polyoxometalate with improved performances , 2021 .

[51]  S. Odom,et al.  Dual function organic active materials for nonaqueous redox flow batteries , 2021, Materials Advances.

[52]  K. Stevenson,et al.  New phenazine based anolyte material for high voltage organic redox flow batteries. , 2021, Chemical communications.

[53]  R. Savinell,et al.  A Nitroxide Containing Organic Molecule in a Deep Eutectic Solvent for Flow Battery Applications , 2021 .

[54]  K. Ramanujam,et al.  Crossover-free hydroxy-substituted quinone anolyte and potassium ferrocyanide catholyte for aqueous alkaline organic redox flow battery , 2021 .

[55]  K. Oyaizu,et al.  Reversible Reduction of the TEMPO Radical: One Step Closer to an All-Organic Redox Flow Battery , 2020 .

[56]  Yunlong Ji,et al.  Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near-Neutral pH. , 2020, Angewandte Chemie.

[57]  J. Fransaer,et al.  Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification , 2020, RSC advances.

[58]  Yongchai Kwon,et al.  Nine watt – Level aqueous organic redox flow battery stack using anthraquinone and vanadium as redox couple , 2020 .

[59]  J. Chai,et al.  Azobenzene‐Based Low‐Potential Anolyte for Nonaqueous Organic Redox Flow Batteries , 2020 .

[60]  D. Aurbach,et al.  On the challenge of large energy storage by electrochemical devices , 2020 .

[61]  J. Chai,et al.  All-PEGylated redox-active metal-free organic molecules in non-aqueous redox flow battery , 2020, Journal of Materials Chemistry A.

[62]  T. Turek,et al.  Evaluation of Options and Limits of Aqueous All-Quinone-Based Organic Redox Flow Batteries , 2020 .

[63]  J. Chai,et al.  A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled Ultrastability and Crossover Suppression. , 2020, ChemSusChem.

[64]  J. Liang,et al.  A symmetric aqueous redox flow battery based on viologen derivative , 2020, Chinese Chemical Letters.

[65]  Weixiao Ji,et al.  A redox-active organic salt for safer Na-ion batteries. , 2020, Nano energy.

[66]  T. Root,et al.  Comparison of Quinone‐Based Catholytes for Aqueous Redox Flow Batteries and Demonstration of Long‐Term Stability with Tetrasubstituted Quinones , 2020, Advanced Energy Materials.

[67]  Zhengjin Yang,et al.  Screening viologen derivatives for neutral aqueous organic redox flow battery. , 2020, ChemSusChem.

[68]  J. Chai,et al.  PEGylation-Enabled Extended Cyclability of a Non-Aqueous Redox Flow Battery. , 2020, ACS applied materials & interfaces.

[69]  Yongchai Kwon,et al.  Performance improvement by novel activation process effect of aqueous organic redox flow battery using Tiron and anthraquinone-2,7-disulfonic acid redox couple , 2020 .

[70]  Ruiyong Chen,et al.  An “interaction-mediating” strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries , 2020, Nano Energy.

[71]  J. Fransaer,et al.  Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries , 2020 .

[72]  Yu Zhu,et al.  Stable Low-Cost Organic Dye Anolyte for Aqueous Organic Redox Flow Battery , 2020 .

[73]  S. Minteer,et al.  Realization of an Asymmetric Non-Aqueous Redox Flow Battery Through Molecular Design to Minimize Active Species Crossover and Decomposition. , 2020, Chemistry.

[74]  A. E. Crockett,et al.  Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries. , 2020, Chemical communications.

[75]  Jeffrey A. Kowalski,et al.  The impact of bulk electrolysis cycling conditions on the perceived stability of redox active materials , 2020 .

[76]  H. Abruña,et al.  Cross-linking Effects on Performance Metrics of Phenazine-Based Polymer Cathodes. , 2020, ChemSusChem.

[77]  Yu Zhu,et al.  Polymeric Active Materials for Redox Flow Battery Application , 2020 .

[78]  Guigen Li,et al.  Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries , 2020 .

[79]  Jin Hong Lee,et al.  Understanding the enhanced electrochemical performance of TEMPO derivatives in non-aqueous lithium ion redox flow batteries , 2019 .

[80]  Yongdan Li,et al.  Enhancing the performance of an all-organic non-aqueous redox flow battery , 2019 .

[81]  Kathryn E. Toghill,et al.  Metal coordination complexes in nonaqueous redox flow batteries , 2019 .

[82]  Kathryn E. Toghill,et al.  Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes , 2019, Journal of Power Sources.

[83]  J. Lemmon,et al.  A nonaqueous all organic semisolid flow battery. , 2019, Chemical communications.

[84]  T. L. Liu,et al.  A pH Neutral, Metal Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. , 2019, Angewandte Chemie.

[85]  P. G. Rasmussen,et al.  Evaluation of an Aqueous Biphenol- and Anthraquinone-Based Electrolyte Redox Flow Battery , 2019, ACS Applied Energy Materials.

[86]  Michael P. Marshak,et al.  Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries , 2019, Joule.

[87]  K. Kang,et al.  Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries , 2019, Chem.

[88]  T. Vaid,et al.  An organic super-electron-donor as a high energy density negative electrolyte for nonaqueous flow batteries. , 2019, Chemical communications.

[89]  Matthew S Sigman,et al.  Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. , 2019, Journal of the American Chemical Society.

[90]  Fikile R. Brushett,et al.  Dimerization of 9,10-anthraquinone-2,7-Disulfonic acid (AQDS) , 2019, Electrochimica Acta.

[91]  U. Schubert,et al.  (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Containing Zwitterionic Polymer as Catholyte Species for High-Capacity Aqueous Polymer Redox Flow Batteries , 2019, Chemistry of Materials.

[92]  Ergang Wang,et al.  Electrochemical Evaluation of a Napthalene Diimide Derivative for Potential Application in Aqueous Organic Redox Flow Batteries , 2019, Energy Technology.

[93]  T. L. Liu,et al.  Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage , 2019, ACS Energy Letters.

[94]  A. Mendes,et al.  Integrated design of hematite and dye-sensitized solar cell for unbiased solar charging of an organic-inorganic redox flow battery , 2019, Nano Energy.

[95]  Huamin Zhang,et al.  Progress and Perspectives of Flow Battery Technologies , 2019, Electrochemical Energy Reviews.

[96]  Liang Wu,et al.  A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical , 2019, Chem.

[97]  Matthew S. Sigman,et al.  Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes. , 2019, Journal of the American Chemical Society.

[98]  Congcheng Wang,et al.  An All-Organic Aqueous Battery Powered by Adsorbed Quinone. , 2019, ACS applied materials & interfaces.

[99]  P. Antoni,et al.  Organic Redox Systems Based on Pyridinium-Carbene Hybrids. , 2019, Journal of the American Chemical Society.

[100]  David G. Kwabi,et al.  A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density , 2019, ACS Energy Letters.

[101]  Yu Ding,et al.  Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems. , 2019, Angewandte Chemie.

[102]  Jaephil Cho,et al.  A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery , 2019, Advanced Energy Materials.

[103]  Fikile R. Brushett,et al.  Tailoring Two-Electron-Donating Phenothiazines To Enable High-Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries , 2019, Chemistry of Materials.

[104]  Hua Wang,et al.  Renewable-lawsone-based sustainable and high-voltage aqueous flow battery , 2019, Energy Storage Materials.

[105]  Yongdan Li,et al.  An all organic redox flow battery with high cell voltage , 2019, RSC advances.

[106]  Yu Ding,et al.  Phenothiazine‐Based Organic Catholyte for High‐Capacity and Long‐Life Aqueous Redox Flow Batteries , 2019, Advanced materials.

[107]  Huamin Zhang,et al.  A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density. , 2019, Chemical communications.

[108]  T. L. Liu,et al.  A 1.51 V pH neutral redox flow battery towards scalable energy storage , 2019, Journal of Materials Chemistry A.

[109]  Eugene E. Kwan,et al.  Extending the Lifetime of Organic Flow Batteries via Redox State Management. , 2019, Journal of the American Chemical Society.

[110]  Z. Chang,et al.  Shifting redox potential of nitroxyl radical by introducing an imidazolium substituent and its use in aqueous flow batteries , 2019, Journal of Power Sources.

[111]  Yu Zhao,et al.  Enhanced cyclability of organic redox flow batteries enabled by an artificial bipolar molecule in neutral aqueous electrolyte , 2019, Journal of Power Sources.

[112]  T. L. Liu,et al.  Redox-Active Inorganic Materials for Redox Flow Batteries , 2019, Encyclopedia of Inorganic and Bioinorganic Chemistry.

[113]  Daniel P. Tabor,et al.  Molecular Engineering of an Alkaline Naphthoquinone Flow Battery , 2019, ACS Energy Letters.

[114]  Yongchai Kwon,et al.  Performance evaluation of aqueous organic redox flow battery using anthraquinone-2,7-disulfonic acid disodium salt and potassium iodide redox couple , 2019, Chemical Engineering Journal.

[115]  J. Lemmon,et al.  All-Liquid Electroactive Materials for High Energy Density Organic Flow Battery , 2019, ACS Applied Energy Materials.

[116]  David G. Kwabi,et al.  A Phosphonate‐Functionalized Quinone Redox Flow Battery at Near‐Neutral pH with Record Capacity Retention Rate , 2019, Advanced Energy Materials.

[117]  Yiyang Liu,et al.  A Sustainable Redox Flow Battery with Alizarin-Based Aqueous Organic Electrolyte , 2019, ACS Applied Energy Materials.

[118]  Ruiyong Chen Toward High‐Voltage, Energy‐Dense, and Durable Aqueous Organic Redox Flow Batteries: Role of the Supporting Electrolytes , 2018, ChemElectroChem.

[119]  Yu Ding,et al.  Highly Concentrated Phthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility , 2018, Chem.

[120]  M. R. Mohamed,et al.  Electrochemical Studies on Alizarin Red S as Negolyte for Redox Flow Battery: a Preliminary Study , 2018, International Journal of Engineering & Technology.

[121]  T. L. Liu,et al.  Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery , 2018, Journal of Energy Chemistry.

[122]  Jinhua Huang,et al.  Comparing calendar and cycle life stability of redox active organic molecules for nonaqueous redox flow batteries , 2018, Journal of Power Sources.

[123]  David G. Kwabi,et al.  Alkaline Quinone Flow Battery with Long Lifetime at pH 12 , 2018, Joule.

[124]  Yi‐Chun Lu,et al.  Lithium–Organic Nanocomposite Suspension for High-Energy-Density Redox Flow Batteries , 2018, ACS Energy Letters.

[125]  Yongdan Li,et al.  A systematic study of the co-solvent effect for an all-organic redox flow battery , 2018, RSC advances.

[126]  Yongdan Li,et al.  Study of Tetraethylammonium bis(trifluoromethylsulfonyl)imide as a Supporting Electrolyte for an All-organic Redox Flow Battery Using Benzophenone and 1,4-di-tert-butyl-2,5-dimethoxybenzene as Active Species , 2018, International Journal of Electrochemical Science.

[127]  A. Manthiram,et al.  A strategically managed rechargeable battery system with a neutral methyl viologen anolyte and an acidic air-cathode enabled by a mediator-ion solid electrolyte , 2018 .

[128]  T. L. Liu,et al.  Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. , 2018, Chemical communications.

[129]  David M. Reed,et al.  A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries , 2018, Nature Energy.

[130]  Mohd Rusllim Mohamed,et al.  Review of zinc-based hybrid flow batteries: From fundamentals to applications , 2018, Materials Today Energy.

[131]  C. Chen,et al.  Pyridyl group design in viologens for anolyte materials in organic redox flow batteries , 2018, RSC advances.

[132]  Jeffrey S. Moore,et al.  Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density , 2018 .

[133]  Tianshou Zhao,et al.  Improved electrolyte for zinc-bromine flow batteries , 2018 .

[134]  Jeffrey S. Moore,et al.  Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers , 2018 .

[135]  Huamin Zhang,et al.  Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage , 2018, iScience.

[136]  Rajeev S. Assary,et al.  Elucidating Factors Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in Nonaqueous Redox Flow Batteries , 2018 .

[137]  Rajeev S. Assary,et al.  Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells , 2018 .

[138]  Z. Yang,et al.  A Two‐Electron Storage Nonaqueous Organic Redox Flow Battery , 2018 .

[139]  U. Schubert,et al.  An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte , 2018 .

[140]  T. L. Liu,et al.  A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage , 2018 .

[141]  U. Schubert,et al.  Synthesis and Characterization of a Phthalimide‐Containing Redox‐Active Polymer for High‐Voltage Polymer‐Based Redox‐Flow Batteries , 2018 .

[142]  Timothy R. Cook,et al.  Concentration-dependent charge-discharge characteristics of non-aqueous redox flow battery electrolyte combinations , 2018 .

[143]  Shelley D. Minteer,et al.  High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries , 2018, ACS central science.

[144]  T. Liu,et al.  A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. , 2018, Angewandte Chemie.

[145]  Yu Ding,et al.  Molecular engineering of organic electroactive materials for redox flow batteries. , 2018, Chemical Society reviews.

[146]  T. L. Liu,et al.  Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries , 2017 .

[147]  T. L. Liu,et al.  Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries , 2017 .

[148]  Fikile R. Brushett,et al.  A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries , 2017 .

[149]  C. Nuckolls,et al.  Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. , 2017, Nano letters.

[150]  S. Dou,et al.  Functional membrane separators for next-generation high-energy rechargeable batteries , 2017 .

[151]  T. L. Liu,et al.  Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries , 2017 .

[152]  C. Sevov,et al.  Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries , 2017 .

[153]  C. Sevov,et al.  Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries , 2017 .

[154]  David M. Reed,et al.  Materials and Systems for Organic Redox Flow Batteries: Status and Challenges , 2017 .

[155]  Z. Chang,et al.  One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane. , 2017, ChemSusChem.

[156]  J. Vaughey,et al.  An investigation of 2,5-di-tertbutyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes , 2017 .

[157]  S. Odom,et al.  Doubling up: Increasing Charge Storage in Organic Donors and Acceptors for Non-Aqueous Redox Flow Batteries , 2017 .

[158]  Yongdan Li,et al.  A benzophenone-based anolyte for high energy density all-organic redox flow battery , 2017 .

[159]  Musbaudeen O. Bamgbopa,et al.  The potential of non-aqueous redox flow batteries as fast-charging capable energy storage solutions: demonstration with an iron–chromium acetylacetonate chemistry , 2017 .

[160]  Frank C. Walsh,et al.  Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage , 2017 .

[161]  Jeffrey A. Kowalski,et al.  “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability , 2017 .

[162]  C. Sevov,et al.  Cyclopropenium Salts as Cyclable, High‐Potential Catholytes in Nonaqueous Media , 2017 .

[163]  David P Hickey,et al.  Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications. , 2017, Journal of the American Chemical Society.

[164]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[165]  V. Sprenkle,et al.  New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries. , 2017, ChemSusChem.

[166]  U. Schubert,et al.  An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox‐Flow Battery , 2017, ChemistryOpen.

[167]  Sean E. Doris,et al.  Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. , 2017, Angewandte Chemie.

[168]  U. Schubert,et al.  Aqueous 2,2,6,6-Tetramethylpiperidine-N-oxyl Catholytes for a High-Capacity and High Current Density Oxygen-Insensitive Hybrid-Flow Battery , 2017 .

[169]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[170]  U. Schubert,et al.  An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. , 2016, Angewandte Chemie.

[171]  Fikile R. Brushett,et al.  High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries , 2016 .

[172]  Xuelong Zhou,et al.  A low-cost iron-cadmium redox flow battery for large-scale energy storage , 2016 .

[173]  Rajeev S. Assary,et al.  Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers , 2016 .

[174]  U. Schubert,et al.  Wasserbasierte Redox‐Flow‐Batterie mit hoher Kapazität und Leistung: das TEMPTMA/MV‐System , 2016 .

[175]  Fikile R. Brushett,et al.  4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries , 2016 .

[176]  David M. Reed,et al.  A High-Current, Stable Nonaqueous Organic Redox Flow Battery , 2016 .

[177]  S. Bhosale,et al.  Functional Naphthalene Diimides: Synthesis, Properties, and Applications. , 2016, Chemical reviews.

[178]  Rajeev S. Assary,et al.  The lightest organic radical cation for charge storage in redox flow batteries , 2016, Scientific Reports.

[179]  Ke Gong,et al.  All-Soluble All-Iron Aqueous Redox-Flow Battery , 2016 .

[180]  U. Schubert,et al.  Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries , 2016 .

[181]  Fikile R. Brushett,et al.  A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR , 2016 .

[182]  Martin D Hager,et al.  Poly(TEMPO)/Zinc Hybrid‐Flow Battery: A Novel, “Green,” High Voltage, and Safe Energy Storage System , 2016, Advanced materials.

[183]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[184]  Xuelong Zhou,et al.  A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage , 2015 .

[185]  Ke Gong,et al.  Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs , 2015, Energy & Environmental Science.

[186]  U. Schubert,et al.  Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries , 2015 .

[187]  Joaquín Rodríguez-López,et al.  Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. , 2015, Journal of the American Chemical Society.

[188]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2015, Nature.

[189]  Kyoung-Hee Shin,et al.  Electrochemical properties of a non-aqueous redox battery with all-organic redox couples , 2015 .

[190]  Ke Gong,et al.  A zinc–iron redox-flow battery under $100 per kW h of system capital cost , 2015 .

[191]  Bin Li,et al.  Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. , 2015, Angewandte Chemie.

[192]  Fikile R. Brushett,et al.  A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries , 2015 .

[193]  L. Thompson,et al.  Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries , 2015 .

[194]  Nicolas E. Holubowitch,et al.  A Highly Soluble Organic Catholyte for Non‐Aqueous Redox Flow Batteries , 2015 .

[195]  Kensuke Takechi,et al.  A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries , 2015, Advanced materials.

[196]  Anthony K. Burrell,et al.  Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries , 2015 .

[197]  Takashi Sukegawa,et al.  Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals toward Flow Cell Application: Synthesis of TEMPO-Crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP , 2014 .

[198]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[199]  A. Hollenkamp,et al.  Emerging electrochemical energy conversion and storage technologies , 2014, Front. Chem..

[200]  T. Kesavan,et al.  Zinc–bromine hybrid flow battery: effect of zinc utilization and performance characteristics , 2014 .

[201]  C. Monroe,et al.  Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries , 2014 .

[202]  P. Fischer,et al.  1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries , 2013 .

[203]  Zheng Li,et al.  Electronic Supplementary Information Aqueous Semi-Solid Flow Cell: Demonstration and Analysis , 2013 .

[204]  J. House,et al.  Thermodynamics of dissolution of ferrocene in n-octane, methanol, and acetonitrile , 2013 .

[205]  J. Sarkar,et al.  Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating , 2013 .

[206]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[207]  Lu Zhang,et al.  Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection , 2012 .

[208]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[209]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[210]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[211]  Lu Zhang,et al.  Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries , 2010 .

[212]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[213]  Li Zhang,et al.  Preliminary study of single flow zinc-nickel battery , 2007 .

[214]  Diane K. Smith,et al.  Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. , 2007, Journal of the American Chemical Society.

[215]  M. Hager,et al.  Structural alterations on the TEMPO scaffold and their impact on the performance as active materials for redox flow batteries , 2022, Materials Advances.

[216]  W. Zhang,et al.  A Prototype of High-Performance Two-Electron Non-aqueous Organic Redox Flow Battery Operated at -40 °C , 2022, Journal of Materials Chemistry A.

[217]  Bing Yuan,et al.  Mechanistic Insights of Cycling Stability of Ferrocene Catholytes in Aqueous Redox Flow Batteries , 2022, Energy & Environmental Science.

[218]  Yueyan Zhang,et al.  Thienoviologen anolytes for aqueous organic redox flow batteries with simultaneously enhanced capacity utilization and capacity retention , 2022, Journal of Materials Chemistry A.

[219]  Rajeev S. Assary,et al.  Critical role of structural order in bipolar redox-active molecules for organic redox flow batteries , 2021, Journal of Materials Chemistry A.

[220]  J. Lemmon,et al.  A low potential solvent-miscible 3-methylbenzophenone anolyte material for high voltage and energy density all-organic flow battery , 2020 .

[221]  Jeffrey S. Moore,et al.  Redox active polymers for non-aqueous redox flow batteries: Validation of the size-exclusion approach , 2017 .

[222]  S. Narayanan,et al.  High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes , 2016 .

[223]  Jihong Wang,et al.  Overview of current development in electrical energy storage technologies and the application potential in power system operation , 2015 .

[224]  Jun Liu,et al.  Towards High‐Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species , 2015 .

[225]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[226]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[227]  Jeffrey A. Kowalski,et al.  Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform , 2014 .

[228]  Nicholas S. Hudak,et al.  Application of Redox Non‐Innocent Ligands to Non‐Aqueous Flow Battery Electrolytes , 2014 .

[229]  Dong Fang,et al.  Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide , 2011 .

[230]  Gaoping Cao,et al.  A study of tiron in aqueous solutions for redox flow battery application , 2010 .