Robust adaptive approximation of implicit curves

We present an algorithm for computing a robust adaptive polygonal approximation of an implicit curve in the plane. The approximation is adapted to the geometry of the curve because the length of the edges varies with the curvature of the curve. Robustness is achieved by combining interval arithmetic and automatic differentiation.

[1]  Daniel L. Toth,et al.  On ray tracing parametric surfaces , 1985, SIGGRAPH.

[2]  Tom Duff,et al.  Interval arithmetic recursive subdivision for implicit functions and constructive solid geometry , 1992, SIGGRAPH.

[3]  Ulrich W. Kulisch,et al.  Numerical Toolbox for Verified Computing I , 1993 .

[4]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[5]  Pat Hanrahan,et al.  Illumination from curved reflectors , 1992, SIGGRAPH.

[6]  Kevin G. Suffern,et al.  Interval methods in computer graphics , 1991, Comput. Graph..

[7]  Mark Novak,et al.  Curve-drawing algorithms for Raster displays , 1985, TOGS.

[8]  Claude Brezinski,et al.  Generative modeling for computer graphics and CAD , 1993 .

[9]  Richard E. Chandler,et al.  A tracking algorithm for implicitly defined curves , 1988, IEEE Computer Graphics and Applications.

[10]  João Batista S. de Oliveira,et al.  Robust Approximation of Offsets and Bisectors of Plane Curves , 2000, SIBGRAPI.

[11]  M. H. van Emden,et al.  Interval Constraint Plotting for Interactive Visual Exploration of Implicitly Defined Relations , 2000, Reliab. Comput..

[12]  Martin J. Dürst,et al.  The design and analysis of spatial data structures. Applications of spatial data structures: computer graphics, image processing, and GIS , 1991 .

[13]  HanrahanPat,et al.  Illumination from curved reflectors , 1992 .

[14]  D. P. Mitchell Robust ray intersection with interval arithmetic , 1990 .

[15]  Dennis S. Arnon,et al.  Topologically reliable display of algebraic curves , 1983, SIGGRAPH.

[16]  H Kagiwada,et al.  Numerical Derivatives and Nonlinear Analysis , 1986 .

[17]  Andrew S. Glassner Going the distance [2D geometry] , 1997 .

[18]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[19]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[20]  Jorge Stolfi,et al.  Adaptive Enumeration of Implicit Surfaces with Affine Arithmetic , 1996, Comput. Graph. Forum.

[21]  L TothDaniel On ray tracing parametric surfaces , 1985 .

[22]  Kevin G. Suffern,et al.  Quadtree Algorithms for Contouring Functions of Two Variables , 1990, Comput. J..

[23]  Jonas Gomes,et al.  Sampling implicit objects with physically-based particle systems , 1996, Comput. Graph..

[24]  Kevin G. Suffern,et al.  Visualisation of implicit surfaces , 2001, Comput. Graph..

[25]  Fred D. Crary A Versatile Precompiler for Nonstandard Arithmetics , 1979, TOMS.

[26]  Max E. Jerrell Automatic differentiation using almost any language , 1989, SGNM.

[27]  R. E. Wengert,et al.  A simple automatic derivative evaluation program , 1964, Commun. ACM.

[28]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[29]  Gabriel Taubin,et al.  Rasterizing algebraic curves and surfaces , 1994, IEEE Computer Graphics and Applications.

[30]  David P. Dobkin,et al.  Contour tracing by piecewise linear approximations , 1990, TOGS.

[31]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[32]  M SnyderJohn Interval analysis for computer graphics , 1992 .

[33]  L. B. Rall The Arithmetic of Differentiation , 1986 .

[34]  Christoph M. Hoffmann,et al.  A dimensionality paradigm for surface interrogations , 1990, Comput. Aided Geom. Des..

[35]  Don P. Mitchell,et al.  Three Applications of Interval Analysis in Computer Graphics , 2000 .

[36]  Sudhir P. Mudur,et al.  Interval Methods for Processing Geometric Objects , 1984, IEEE Computer Graphics and Applications.