Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes

[1]  R. Latorre,et al.  Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. , 1983, Biophysical journal.

[2]  S. McLaughlin,et al.  Large divalent cations and electrostatic potentials adjacent to membranes. A theoretical calculation. , 1983, Biophysical journal.

[3]  R. Benz,et al.  The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). , 1983, Biophysical journal.

[4]  B. Hille,et al.  Lyotropic anions. Na channel gating and Ca electrode response , 1983, The Journal of general physiology.

[5]  P. Kostyuk,et al.  Surface charges on the outer side of mollusc neuron membrane , 1982, Journal of Membrane Biology.

[6]  A. McLaughlin Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe. , 1982, Biochemistry.

[7]  J. P. Valleau,et al.  Electrical double layers. 4. Limitations of the Gouy-Chapman theory , 1982 .

[8]  J. Fohlmeister,et al.  Periaxonal surface calcium binding and distribution of charge on the faces of squid axon potassium channel molecules , 1982, The Journal of Membrane Biology.

[9]  J. Seelig,et al.  Interaction of metal ions with phosphatidylcholine bilayer membranes. , 1981, Biochemistry.

[10]  R. Kurland,et al.  Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding. , 1981, Biochimica et biophysica acta.

[11]  S. McLaughlin,et al.  The adsorption of divalent cations to phosphatidylglycerol bilayer membranes. , 1981, Biochimica et biophysica acta.

[12]  S. Levine,et al.  Numerical solution of a modified Poisson-Boltzmann equation for 1 : 2 and 2 : 1 electrolytes in the diffuse layer , 1981 .

[13]  S. McLaughlin,et al.  Adsorption of divalent cations to bilayer membranes containing phosphatidylserine , 1981, The Journal of general physiology.

[14]  S. Ohki Membrane potential, surface potential, and ionic permeabilities. , 1979, Physiological chemistry and physics.

[15]  S. McLaughlin,et al.  Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. , 1979, Biochemistry.

[16]  R. Kurland,et al.  Specificity of Na+ binding to phosphatidylserine vesicles from a 23Na NMR relaxation rate study. , 1979, Biochimica et biophysica acta.

[17]  J. Westman,et al.  Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles. , 1977, Biochimica et biophysica acta.

[18]  C. Schauf The interactions of calcium with mpyxicola giant axons and a description in terms of a simple surface charge model. , 1975, The Journal of physiology.

[19]  T. Begenisich Magnitude and location of surface charges on Myxicola giant axons , 1975, The Journal of general physiology.

[20]  B. Hille,et al.  Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  A. Bangham,et al.  Comparison of double layer potentials in lipid monolayers and lipid bilayer membranes , 1972, The Journal of Membrane Biology.

[22]  S. McLaughlin,et al.  IONIC PROBES OF MEMBRANE STRUCTURES * , 1972, Annals of the New York Academy of Sciences.

[23]  S. McLaughlin,et al.  Divalent Ions and the Surface Potential of Charged Phospholipid Membranes , 1971, The Journal of general physiology.

[24]  H. Shindo,et al.  Autoradiographic studies on the distribution of quaternary ammonium compounds. II. Distribution of 14 C-labeld decamethonium, hexamethonium and dimethonium in mice. , 1971, Chemical & pharmaceutical bulletin.

[25]  S. McLaughlin,et al.  Surface charge and the conductance of phospholipid membranes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Naumov,et al.  Effect of Surface Charge on the Steady-state Potassium Conductance of Nodal Membrane , 1970, Nature.

[27]  G. Ehrenstein,et al.  Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. , 1969, Biophysical journal.

[28]  A. L. Loeb,et al.  Calculation of the electrophoretic mobility of a spherical colloid particle , 1966 .

[29]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[30]  S. McLaughlin Divalent Cations, Electrostatic Potentials, Bilayer Membranes , 1982 .

[31]  D. Papahadjopoulos,et al.  201 - Binding of Cations to Phosphatidylserine Vesicles , 1978 .

[32]  S. McLaughlin Electrostatic Potentials at Membrane-Solution Interfaces , 1977 .

[33]  M. W. Hill,et al.  Preparation and Use of Liposomes as Models of Biological Membranes , 1974 .

[34]  D. C. Henry 187. A source of error in micro-cataphoretic measurements with a cylindrical-bore cell , 1938 .