Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks

We investigate the use of risk measures and theories of choice to model risk-averse routing and traffic equilibrium on networks with random travel times. We interpret the postulates of these theories in the context of routing, identifying additive consistency as a plausible condition that allows to reduce risk-averse route choice to a standard shortest path problem. Within the classical theories of choice, we show that the only preferences that satisfy this condition are the ones induced by the entropic risk measures.

[1]  M. Goovaerts,et al.  A note on additive risk measures in rank-dependent utility , 2010 .

[2]  Andreas Tsanakas,et al.  Risk Measures and Theories of Choice , 2003 .

[3]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[4]  Evdokia Nikolova,et al.  Approximation Algorithms for Reliable Stochastic Combinatorial Optimization , 2010, APPROX-RANDOM.

[5]  N. Stier-Moses,et al.  Wardrop Equilibria with Risk-Averse Users , 2010 .

[6]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[7]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[8]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[9]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[10]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[11]  S. Heilpern A rank-dependent generalization of zero utility principle , 2003 .

[12]  Alexander Shapiro,et al.  Conditional Risk Mappings , 2005, Math. Oper. Res..

[13]  Georg Ch. Pflug,et al.  Time-inconsistent multistage stochastic programs: Martingale bounds , 2016, Eur. J. Oper. Res..

[14]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[15]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[16]  D. Bernoulli Specimen theoriae novae de mensura sortis : translated into German and English , 1967 .

[17]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[18]  A. Pichler On Dynamic Decomposition of Multistage Stochastic Programs , 2012 .

[19]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[20]  M. Fosgerau,et al.  Travel time variability: Definition and valuation , 2008 .

[21]  Darinka Dentcheva,et al.  Common Mathematical Foundations of Expected Utility and Dual Utility Theories , 2012, SIAM J. Optim..

[22]  Yaron Hollander,et al.  Direct versus indirect models for the effects of unreliability , 2006 .

[23]  P. Wakker Separating marginal utility and probabilistic risk aversion , 1994 .

[24]  E. Hayes Mean Values. , 2022, Science.

[25]  Tito Homem-de-Mello,et al.  Optimal Path Problems with Second-Order Stochastic Dominance Constraints , 2012 .

[26]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[27]  K. Arrow,et al.  Aspects of the theory of risk-bearing , 1966 .

[28]  Y. Nie,et al.  Shortest path problem considering on-time arrival probability , 2009 .

[29]  Michel Denuit,et al.  Risk measurement with equivalent utility principles , 2006 .

[30]  P. Fishburn,et al.  Utility theory , 1980, Cognitive Choice Modeling.

[31]  Mogens Fosgerau,et al.  Additive measures of travel time variability , 2011 .

[32]  Cuncun Luan INSURANCE PREMIUM CALCULATIONS WITH ANTICIPATED UTILITY THEORY , 2001 .

[33]  Jan Dhaene,et al.  A Unified Approach to Generate Risk Measures , 2003, ASTIN Bulletin.

[34]  J. Bates,et al.  The valuation of reliability for personal travel , 2001 .

[35]  Ronald Prescott Loui,et al.  Optimal paths in graphs with stochastic or multidimensional weights , 1983, Commun. ACM.

[36]  J. Quiggin A theory of anticipated utility , 1982 .

[37]  Yu Nie,et al.  Modeling heterogeneous risk-taking behavior in route choice , 2011 .

[38]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[39]  Xing Wu,et al.  Modeling Heterogeneous Risk-Taking Behavior in Route Choice: A Stochastic Dominance Approach , 2011 .

[40]  Michael A. P. Taylor,et al.  Modelling Travel Time Reliability with the Burr Distribution , 2012 .

[41]  Wlodzimierz Ogryczak,et al.  From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..

[42]  Matthew Brand,et al.  Stochastic Shortest Paths Via Quasi-convex Maximization , 2006, ESA.

[43]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[44]  J. Aczél On mean values , 1948 .

[45]  J. Pratt RISK AVERSION IN THE SMALL AND IN THE LARGE11This research was supported by the National Science Foundation (grant NSF-G24035). Reproduction in whole or in part is permitted for any purpose of the United States Government. , 1964 .

[46]  R. Noland,et al.  Travel time variability: A review of theoretical and empirical issues , 2002 .

[47]  N. Stier-Moses A Mean-Risk Model for the Stochastic Traffic Assignment Problem , 2011 .

[48]  Fernando Ordóñez,et al.  Wardrop Equilibria with Risk-Averse Users , 2010, Transp. Sci..

[49]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[50]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[51]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[52]  M. Goovaerts,et al.  Decision principles derived from risk measures , 2010 .

[53]  Yu Nie,et al.  Multi-class percentile user equilibrium with flow-dependent stochasticity , 2011 .

[54]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[55]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[56]  Evdokia Nikolova,et al.  A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times , 2013, Oper. Res..

[57]  Hans U. Gerber,et al.  On Additive Premium Calculation Principles , 1974, ASTIN Bulletin.

[58]  Klaus Jansen,et al.  Proceedings of the 13th international conference on Approximation, and 14 the International conference on Randomization, and combinatorial optimization: algorithms and techniques , 2010 .

[59]  A. Chateauneuf Comonotonicity axioms and rank-dependent expected utility theory for arbitrary consequences , 1999 .

[60]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .